Oceanic meridional transports and their roles in warm water volume variability and ENSO in the tropical Pacific

2022 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Bohua Huang ◽  
Fei-Fei Jin
2013 ◽  
Vol 26 (8) ◽  
pp. 2601-2613 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Hong-Li Ren ◽  
Hui Wang ◽  
Michelle L’Heureux ◽  
...  

Abstract An interdecadal shift in the variability and mean state of the tropical Pacific Ocean is investigated within the context of changes in El Niño–Southern Oscillation (ENSO). Compared with 1979–99, the interannual variability in the tropical Pacific was significantly weaker in 2000–11, and this shift can be seen by coherent changes in both the tropical atmosphere and ocean. For example, the equatorial thermocline tilt became steeper during 2000–11, which was consistent with positive (negative) sea surface temperature anomalies, increased (decreased) precipitation, and enhanced (suppressed) convection in the western (central and eastern) tropical Pacific, which reflected an intensification of the Walker circulation. The combination of a steeper thermocline slope with stronger surface trade winds is proposed to have hampered the eastward migration of the warm water along the equatorial Pacific. As a consequence, the variability of the warm water volume was reduced and thus ENSO amplitude also decreased. Sensitivity experiments with the Zebiak–Cane model confirm the link between thermocline slope, wind stress, and the amplitude of ENSO.


2010 ◽  
Vol 23 (14) ◽  
pp. 3855-3873 ◽  
Author(s):  
Alexey V. Fedorov

Abstract Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio ɛk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.


2013 ◽  
Vol 10 (4) ◽  
pp. 951-984
Author(s):  
V. N. Stepanov

Abstract. It is well known that El Niño Southern Oscillation (ENSO) causes floods, droughts and the collapse of fisheries, therefore forecasting of ENSO is an important task in climate researches. Variations in the equatorial warm water volume of the tropical Pacific and wind variability in the western equatorial Pacific has been considered to be a good ENSO predictor. However, in the 2000s, the interrelationship between these two characteristics and ENSO onsets became weak. This article attempts to find some plausible explanation for this. The results presented here demonstrate a possible link between the variability of atmospheric conditions over the Southern Ocean and their impact on the ocean circulation leading to the amplifying/triggering of ENSO events. It is shown that the variability of the atmospheric conditions upstream of Drake Passage can strongly influence ENSO events. The interrelationship between ENSO and variability in the equatorial warm water volume of the equatorial Pacific, together with wind variability in the western equatorial Pacific has recently weakened. It can be explained by the fact that the process occurred in the Southern Ocean recently became a major contributor amplifying ENSO events (in comparison with the processes of interaction between the atmosphere and the ocean in the tropics of the Pacific). Likely it is due to a warmer ocean state observed from the end of the 1990s that led to smaller atmospheric variability in the tropics and insignificant their changes in the Southern Ocean.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Jieshun Zhu ◽  
Bohua Huang ◽  
Yu-heng Tseng ◽  
...  

2017 ◽  
Vol 47 (1) ◽  
pp. 211-225 ◽  
Author(s):  
Qing Lu ◽  
Zhenxin Ruan ◽  
Dong-Ping Wang ◽  
Dake Chen ◽  
Qiaoyan Wu

AbstractObservations from TRITON buoys in the warm/fresh pool and a global ocean general circulation model are used to study the interannual variability of the equatorial western Pacific and the relationship between the zonal warm water transport, meridional convergence, and the warm water volume (WWV). The simulated temperature, salinity, and zonal warm water transport are validated with the mooring observations for the period 2000–14. The model results are then used to examine the WWV balance in ENSO cycles in an extended period from 1980 to 2014. It is shown that the zonal transport is highly correlated with meridional convergence and leads by about 4–5 months, and their phase offset determines the WWV changes. This result differs from the recharge paradigm in which the meridional convergence is supposed to be mainly responsible for the WWV changes. There is also no apparent change in relationship between zonal and meridional transports since 2000, unlike that between WWV and SST. The study suggests that the zonal warm water transport from the western boundary could have major implications for ENSO dynamics.


2019 ◽  
Vol 49 (6) ◽  
pp. 1541-1560 ◽  
Author(s):  
Allan J. Clarke ◽  
Xiaolin Zhang

AbstractPrevious work has shown that warm water volume (WWV), usually defined as the volume of equatorial Pacific warm water above the 20°C isotherm between 5°S and 5°N, leads El Niño. In contrast to previous discharge–recharge oscillator theory, here it is shown that anomalous zonal flow acceleration right at the equator and the movement of the equatorial warm pool are crucial to understanding WWV–El Niño dynamics and the ability of WWV to predict ENSO. Specifically, after westerly equatorial wind anomalies in a coupled ocean–atmosphere instability push the warm pool eastward during El Niño, the westerly anomalies follow the warmest water south of the equator in the Southern Hemisphere summer in December–February. With the wind forcing that causes El Niño in the eastern Pacific removed, the eastern equatorial Pacific sea level and thermocline anomalies decrease. Through long Rossby wave dynamics this decrease results in an anomalous westward equatorial flow that tends to push the warm pool westward and often results in the generation of a La Niña during March–June. The anomalously negative eastern equatorial Pacific sea level typically does not change as much during La Niña, the negative feedback is not as strong, and El Niños tend to not follow La Niñas the next year. This El Niño/La Niña asymmetry is seen in the WWV/El Niño phase diagram and decreased predictability during “La Niña–like” decades.


Sign in / Sign up

Export Citation Format

Share Document