scholarly journals Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex I: analytical approach and data evaluation

2004 ◽  
Vol 147 (4) ◽  
pp. 385-396 ◽  
Author(s):  
Werner E. Halter ◽  
Thomas Pettke ◽  
Christoph A. Heinrich
Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


2014 ◽  
Vol 29 (5) ◽  
pp. 903 ◽  
Author(s):  
Jitka Míková ◽  
Jan Košler ◽  
Michael Wiedenbeck

2001 ◽  
Vol 48 (5) ◽  
pp. 757 ◽  
Author(s):  
E. A. Belousova ◽  
W. L. Griffin ◽  
S. R. Shee ◽  
S. E. Jackson ◽  
S. Y. O'Reilly

2020 ◽  
Vol 7 (2) ◽  
pp. 623-633
Author(s):  
Petra Skácelová ◽  
Pablo Lebed ◽  
Jan Filip ◽  
Deborah Oughton ◽  
Radek Zbořil

A new analytical approach for environmental tracing of iron nanoparticles used for nanoremediation has been developed. The methodology is based on ICP-MS analysis of the elemental signature of the nanoparticles.


2019 ◽  
Vol 20 (3) ◽  
pp. 280-298
Author(s):  
Paul A. Morris ◽  
Alex Christ ◽  
Edward J. Mikucki

The <10, <4, <2.5 and <1 µm fractions of eight regolith samples have been extracted as aerosols, then analysed for more than 60 elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Precision and accuracy rivals that of conventional digestion and ICP-MS analysis for most elements, but the aerosol extraction and ablation approach can be completed within 30 min, avoids compromising the sample by screening, column settling, fusion and/or digestion, and includes data for elements such as Br, Cl, I and Se that are conventionally analysed by individual procedures. Major element chemistry and scanning electron microscope (SEM) imagery show that the aerosol fractions of regolith are dominated by kaolinite, with quartz in aeolian regolith. The aerosol fractions of Si- and Ca-rich regolith have higher trace element concentrations than the coarser fraction (0.45–2 mm), but chalcophile elements are depleted in the aerosols of Fe-rich regolith relative to the coarser fraction. Improvements in in-field analytical technology coupled with aerosol extraction mean that fine and ultrafine fraction chemistry can be used to guide mineral exploration programmes in close to real time.Supplementary material: The results of the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of filter papers are available at https://doi.org/10.6084/m9.figshare.c.4562807


2014 ◽  
Vol 29 (5) ◽  
pp. 832-840 ◽  
Author(s):  
Jan Košler ◽  
Simon E. Jackson ◽  
Zhaoping Yang ◽  
Richard Wirth

The presence of oxygen during U–Th–Pb LA ICP-MS analysis of zircon controls the laser-induced elemental fractionation and ICP-MS sensitivity.


2020 ◽  
Vol 7 (1) ◽  
pp. 4-12
Author(s):  
D. V. Kiseleva

Laser ablation (LA) sampling provides fast microelement ICP-MS analysis of a wide range of solid materials without their dissolution, thus decreasing contamination from water and reagents as well as reducing polyatomic isobaric interferences from acid solutions. However, the issue of matrix-matched calibration becomes crucial for LA-ICP-MS due to differences in behaviour during laser interaction and evaporation of solid samples. There are several approaches to LA calibration: simultaneous supply of standard solutions into a spray chamber; calibration using a set of NIST 61х synthetic glasses and glasses prepared from natural rocks and minerals (basalt, nephelinite, etc.) or pressed synthetic samples (calcium carbonates, phosphates and sulphides produced by USGS). A set of natural glasses for microanalysis is available from the International Association of Geoanalysts (IAG) in co-operation with the USGS. The G-Probe proficiency testing programme has been operating since 2008 and deals with solid samples for microanalysis (LA-ICP-MS, EPMA, EDS-SEM). A number of samples of different compositions were distributed: BBM-1G and BSWIR-1G natural basaltic glasses, GSM-1 gabbro; NIST SRM-based basaltic and diabase glasses; GP-MACS synthetic pressed calcium carbonate, GP-MAPS phosphate and some others. The aim of the present work was to estimate the LA-ICP-MS analysis quality using matrix-matched calibration with G-probe samples of various composition. All G-Probe samples were analysed using an ELAN 9000 Q-ICP-MS combined with a LSX-500 (Nd:YAG, 266 nm) laser ablation system. For silicate rocks, TB-1 basaltic glass was used for calibration; the remaining samples were analysed as unknowns. MAPS-4 calibration material were used for phosphate rock analysis. A combination of external matrix-matched calibration and internal normalisation was used for calculating element concentrations. LA-ICP-MS analysis quality was estimated using z-scores. Most of the results obtained were in a good agreement with assigned values.


Sign in / Sign up

Export Citation Format

Share Document