Rare earth element–SiO2 systematics of island arc crustal amphibolite migmatites from the Asago body of the Yakuno Ophiolite, Japan: a field evaluation of some model predictions

Author(s):  
Xiaofei Pu ◽  
James G. Brophy ◽  
Tatsuki Tsujimori
1989 ◽  
Vol 26 (12) ◽  
pp. 2465-2478 ◽  
Author(s):  
O. Rouer ◽  
H. Lapierre ◽  
C. Coulon ◽  
A. Michard

The mid-Paleozoic volcanics of northern Sierra Nevada consist of the Sierra Buttes rhyolites, the Taylor basalts and andesites, and the Keddie Ridge basalt–latite–rhyolite suite. The Sierra Buttes calc-alkaline rhyolites display strong light rare-earth element enrichment and negative εNd values. The Taylor basalts and andesites in the northern Hough and Genesee blocks exhibit calc-alkaline affinities (REE rare-earth element patterns highly enriched in LREE), whereas in the southern Hough block they are tholeiitic (flat rare-earth element patterns). The abundance of silicic lavas, the low εNd values of both the Sierra Buttes and Taylor volcanics and the δ18O values of the Sierra Buttes rhyolite and Bowman Lake trondjhemite provide evidence that the northern Sierra Nevada island arc was continent based. The Keddie Ridge differentiated volcanics, characterized by high Zr, Y, Nb, K, and light rare-earth elements, are geochemically similar to a shoshonite suite. Their eruption at the end of the mid-Paleozoic volcanic episode suggests a reversal of subduction, uplift, and block faulting in the island arc.The mid-Paleozoic volcanics of the northern Sierra Nevada are thought to represent the remnant of a mature island arc because calc-alkaline rocks predominate over tholeiitic ones, the lavas display a K enrichment with time, and the volcanics are evolved in their isotopes, compared with rocks erupted in young or primitive island arcs.


2019 ◽  
pp. 87-114
Author(s):  
A. V. Moiseev ◽  
M. V. Luchitskaya ◽  
I. V. Gul’pa ◽  
V. B. Khubanov ◽  
B. V. Belyatsky

Vendian and Permian-Triassic plagiogranite magmatism is distinguished for Ust’-Belsky and Algansky terranes of West-Koryak fold system. U–Pb zircon ages from Vendian and Permian-Triassic plagiogranites are 556 ± 3 Ma (SIMS), 538 ± 7 Ma (LA–ICP–MS) and 235 ± 2 Ma (SIMS) consequently. It is revealed, that Vendian and Permian-Triassic plagiogranites are mainly low-K and low-Al. Sr–Nd isotopy and rare-earth element patterns allow supposing their formation by partial melting of primarily mantle substrate or by fractional crystallization of basic magma. Vendian plagiogranites formed within active margin in ensimatic island arc simultaneously with deposition of lower part of volcanic-sedimentary complex of Otrozhninskaya slice. We suggest the Permian-Triassic plagiogranites were being formed within the limits of Ust’-Belsky segment of Koni-Taigonos arc during partial melting of melanocratic ophiolite material build up as fragments in accretionary structure of that arc or by fractional crystallization of basic magmas melted from the similar substrate.


2016 ◽  
Author(s):  
Shayantani Ghosal ◽  
◽  
Sudha Agrahari ◽  
Debashish Sengupta

Sign in / Sign up

Export Citation Format

Share Document