Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways

2012 ◽  
Vol 137 (4) ◽  
pp. 513-525 ◽  
Author(s):  
Yan Yu ◽  
Jinquan Mu ◽  
Zhipeng Fan ◽  
Gang Lei ◽  
Ming Yan ◽  
...  
2019 ◽  
Vol 20 (20) ◽  
pp. 4982 ◽  
Author(s):  
Yangfan Li ◽  
Zhifen Qiao ◽  
Fenglin Yu ◽  
Huiting Hu ◽  
Yadong Huang ◽  
...  

Periodontal disease is the main reason for tooth loss in adults. Tissue engineering and regenerative medicine are advanced technologies used to manage soft and hard tissue defects caused by periodontal disease. We developed a transforming growth factor-β3/chitosan sponge (TGF-β3/CS) to repair periodontal soft and hard tissue defects. We investigated the proliferation and osteogenic differentiation behaviors of primary human periodontal ligament stem cells (hPDLSCs) to determine the bioactivity and potential application of TGF-β3 in periodontal disease. We employed calcein-AM/propidium iodide (PI) double labeling or cell membranes (CM)-Dil labeling coupled with fluorescence microscopy to trace the survival and function of cells after implantation in vitro and in vivo. The mineralization of osteogenically differentiated hPDLSCs was confirmed by measuring alkaline phosphatase (ALP) activity and calcium content. The levels of COL I, ALP, TGF-βRI, TGF-βRII, and Pp38/t-p38 were assessed by western blotting to explore the mechanism of bone repair prompted by TGF-β3. When hPDLSCs were implanted with various concentrations of TGF-β3/CS (62.5–500 ng/mL), ALP activity was the highest in the TGF-β3 (250 ng/mL) group after 7 d (p < 0.05 vs. control). The calcium content in each group was increased significantly after 21 and 28 d (p < 0.001 vs. control). The optimal result was achieved by the TGF-β3 (500 ng/mL) group. These results showed that TGF-β3/CS promotes osteogenic differentiation of hPDLSCs, which may involve the p38 mitogen-activated protein kinase (MAPK) signaling pathway. TGF-β3/CS has the potential for application in the repair of incomplete alveolar bone defects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiyi Huang ◽  
Fenglin Yu ◽  
Yating Cheng ◽  
Yangfan Li ◽  
Yini Chen ◽  
...  

Patients with a skull defect are at risk of developing cerebrospinal fluid leakage and ascending bacterial meningitis at &gt;10% per year. However, treatment with stem cells has brought great hope to large-area cranial defects. Having found that transforming growth factor (TGF)-β3 can promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), we designed a hybrid TGF-β3/recombinant human-like collagen recombinant human collagen/chitosan (CS) freeze-dried sponge (TRFS) loading hPDLSCs (TRFS-h) to repair skull defects in rats. CFS with 2% CS was selected based on the swelling degree, water absorption, and moisture retention. The CS freeze-dried sponge (CFS) formed a porous three-dimensional structure, as observed by scanning electron microscopy. In addition, cytotoxicity experiments and calcein-AM/PI staining showed that TRFS had a good cellular compatibility and could be degraded completely at 90 days in the implantation site. Furthermore, bone healing was evaluated using micro-computed tomography in rat skull defect models. The bone volume and bone volume fraction were higher in TRFS loaded with hPDLSCs (TRFS-h) group than in the controls (p &lt; 0.01, vs. CFS or TRFS alone). The immunohistochemical results indicated that the expression of Runx2, BMP-2, and collagen-1 (COL Ⅰ) in cells surrounding bone defects in the experimental group was higher than those in the other groups (p &lt; 0.01, vs. CFS or TRFS alone). Taken together, hPDLSCs could proliferate and undergo osteogenic differentiation in TRFS (p &lt; 0.05), and TRFS-h accelerated bone repair in calvarial defect rats. Our research revealed that hPDLSCs could function as seeded cells for skull injury, and their osteogenic differentiation could be accelerated by TGF-β3. This represents an effective therapeutic strategy for restoring traumatic defects of the skull.


Author(s):  
Li YangFan ◽  
zhifen Qiao ◽  
Fenglin Yu ◽  
Huiting Hu ◽  
Yadong Huang ◽  
...  

Abstract: Periodontal disease is the main reason for tooth loss in adults. Tissue engineering and regenerative medicine are the advanced technologies used to manage soft and hard tissue defects caused by periodontal disease. We developed a transforming growth factor-&beta;3 chitosan sponge (TGF-&beta;3/CS) to repair periodontal soft and hard tissue defects. We investigated the proliferation and osteogenic differentiation behaviors of primary human periodontal ligament stem cells (hPDLSCs) to discuss the bioactivity and application of TGF-&beta;3 in periodontal disease. We separately used Calcein-AM/PI double-labeling or CM-Dil-labeling coupled with fluorescence microscopy to trace the survival and function of the cells after implantation in vitro or in vivo. The mineralization of osteogenic differentiated hPDLSCs was confirmed by measuring ALP activity and calcium content. The levels of COL I, ALPL, TGF-&beta;RI, TGF-&beta;RII, and Pp38/t-p38 were tested using Western blot to explore the mechanism of bone repair prompted by TGF-&beta;3. When hPDLSCs were inoculated with different concentrations of TGF-&beta;3/CS (62.5&ndash;500 ng/mL), ALP activity was the highest in TGF-&beta;3 (250 ng/mL) group after seven days (P &lt; 0.05 vs. control); the calcium content in each group increased significantly after 21 and 28 days (P &lt; 0.001 vs. control). The best result was achieved in the TGF-&beta;3 (500 ng/mL) group. All results showed that TGF-&beta;3/CS can promote osteogenic differentiation of hPDLSC and may be involved in the p38 MAPK signaling pathway. TGF-&beta;3/CS has the potential for application in the repair of incomplete alveolar bone defects.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Meng ◽  
Ying Zhou ◽  
Jingkun Li ◽  
Meilin Hu ◽  
Xiaomeng Li ◽  
...  

Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.


Sign in / Sign up

Export Citation Format

Share Document