High level Purkinje cell specific expression of green fluorescent protein in transgenic mice

2001 ◽  
Vol 115 (6) ◽  
pp. 455-464 ◽  
Author(s):  
Xulun Zhang ◽  
Stephan L. Baader ◽  
Feng Bian ◽  
Wolfgang Müller ◽  
John Oberdick
2002 ◽  
Vol 283 (6) ◽  
pp. F1351-F1364 ◽  
Author(s):  
Ludmilla Zharkikh ◽  
Xiaohong Zhu ◽  
Peter K. Stricklett ◽  
Donald E. Kohan ◽  
Greg Chipman ◽  
...  

The purpose of this study is to develop transgenic mice with principal cell-specific expression of green fluorescent protein (GFP). After the cloning and sequencing of the mouse aquaporin-2 (AQP2) gene, 9.5 kb of the promoter were used to drive expression of GFP in transgenic mice. In transgenic mice, GFP was selectively expressed in principal cells of the renal collecting duct and not in intercalated cells. Expression was increased by dehydration of mice. AQP2 and GFP expression was maintained in primary cultures of renal medulla that were stimulated with cAMP or vasopressin analogs. GFP-expressing cells were then isolated by fluorescence-activated cell sorting. RT-PCR analysis showed expression of AQP2, AQP3, AQP4, vasopressin type 2 receptor, and cAMP response element binding protein but not H+-ATPase B1 subunit or anion exchanger 1. After expansion of these cells in culture, RT-PCR analysis showed continued expression of the same genes. This pattern of gene expression is that of principal cells rather than intercalated cells. This transgenic mouse model can be used in future studies of gene expression during the development, differentiation, and maturation of renal principal cells.


2008 ◽  
Vol 88 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Jingbin Yan ◽  
Yanping Xiao ◽  
Shu Wang ◽  
Zhijuan Gong ◽  
Shuzheng Huang ◽  
...  

2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.


2014 ◽  
Vol 60 (3) ◽  
pp. 230-237 ◽  
Author(s):  
Hitomi MATSUNARI ◽  
Toshihiro KOBAYASHI ◽  
Masahito WATANABE ◽  
Kazuhiro UMEYAMA ◽  
Kazuaki NAKANO ◽  
...  

2006 ◽  
Vol 27 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Yvonne N. Tallini ◽  
Bo Shui ◽  
Kai Su Greene ◽  
Ke-Yu Deng ◽  
Robert Doran ◽  
...  

The peripheral nervous system has complex and intricate ramifications throughout many target organ systems. To date this system has not been effectively labeled by genetic markers, due largely to inadequate transcriptional specification by minimum promoter constructs. Here we describe transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed under the control of endogenous choline acetyltransferase (ChAT) transcriptional regulatory elements, by knock-in of eGFP within a bacterial artificial chromosome (BAC) spanning the ChAT locus and expression of this construct as a transgene. eGFP is expressed in ChATBAC-eGFP mice in central and peripheral cholinergic neurons, including cell bodies and processes of the somatic motor, somatic sensory, and parasympathetic nervous system in gastrointestinal, respiratory, urogenital, cardiovascular, and other peripheral organ systems. Individual epithelial cells and a subset of lymphocytes within the gastrointestinal and airway mucosa are also labeled, indicating genetic evidence of acetylcholine biosynthesis. Central and peripheral neurons were observed as early as 10.5 days postcoitus in the developing mouse embryo. ChATBAC-eGFP mice allow excellent visualization of all cholinergic elements of the peripheral nervous system, including the submucosal enteric plexus, preganglionic autonomic nerves, and skeletal, cardiac, and smooth muscle neuromuscular junctions. These mice should be useful for in vivo studies of cholinergic neurotransmission and neuromuscular coupling. Moreover, this genetic strategy allows the selective expression and conditional inactivation of genes of interest in cholinergic nerves of the central nervous system and peripheral nervous system.


Sign in / Sign up

Export Citation Format

Share Document