scholarly journals Analysis of the Bacillus subtilis spoIIIJ Gene and Its Paralogue Gene, yqjG

2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.

2006 ◽  
Vol 188 (8) ◽  
pp. 3099-3109 ◽  
Author(s):  
Jan-Willem Veening ◽  
Oscar P. Kuipers ◽  
Stanley Brul ◽  
Klaas J. Hellingwerf ◽  
Remco Kort

ABSTRACT The spore-forming bacterium Bacillus subtilis is able to form highly organized multicellular communities called biofilms. This coordinated bacterial behavior is often lost in domesticated or laboratory strains as a result of planktonic growth in rich media for many generations. However, we show here that the laboratory strain B. subtilis 168 is still capable of forming spatially organized multicellular communities on minimal medium agar plates, exemplified by colonies with vein-like structures formed by elevated bundles of cells. In line with the current model for biofilm formation, we demonstrate that overproduction of the phosphorelay components KinA and Spo0A stimulates bundle formation, while overproduction of the transition state regulators AbrB and SinR leads to repression of formation of elevated bundles. Time-lapse fluorescence microscopy studies of B. subtilis green fluorescent protein reporter strains show that bundles are preferential sites for spore formation and that flat structures surrounding the bundles contain vegetative cells. The elevated bundle structures are formed prior to sporulation, in agreement with a genetic developmental program in which these processes are sequentially activated. Perturbations of the phosphorelay by disruption and overexpression of genes that lead to an increased tendency to sporulate result in the segregation of sporulation mutations and decreased heat resistance of spores in biofilms. These results stress the importance of a balanced control of the phosphorelay for biofilm and spore development.


2001 ◽  
Vol 115 (6) ◽  
pp. 455-464 ◽  
Author(s):  
Xulun Zhang ◽  
Stephan L. Baader ◽  
Feng Bian ◽  
Wolfgang Müller ◽  
John Oberdick

2002 ◽  
Vol 184 (14) ◽  
pp. 3871-3878 ◽  
Author(s):  
Julien Brillard ◽  
Eric Duchaud ◽  
Noël Boemare ◽  
Frank Kunst ◽  
Alain Givaudan

ABSTRACT Photorhabdus is an entomopathogenic bacterium symbiotically associated with nematodes of the family Heterorhabditidae. Bacterial hemolysins found in numerous pathogenic bacteria are often virulence factors. We describe here the nucleotide sequence and the molecular characterization of the Photorhabdus luminescens phlBA operon, a locus encoding a hemolysin which shows similarities to the Serratia type of hemolysins. It belongs to the two-partner secretion (TPS) family of proteins. In low-iron conditions, a transcriptional induction of the phlBA operon was observed by using the chloramphenicol acetyltransferase reporter gene, causing an increase in PhlA hemolytic activity compared to iron-rich media. A spontaneous phase variant of P. luminescens was deregulated in phlBA transcription. The phlA mutant constructed by allelic exchange remained highly pathogenic after injection in the lepidopteran Spodoptera littoralis, indicating that PhlA hemolysin is not a major virulence determinant. Using the gene encoding green fluorescent protein as a reporter, phlBA transcription was observed in hemolymph before insect death. We therefore discuss the possible role of PhlA hemolytic activity in the bacterium-nematode-insect interactions.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1325 ◽  
Author(s):  
Ke Yue ◽  
Tran Nam Trung ◽  
Yiyong Zhu ◽  
Ralf Kaldenhoff ◽  
Lei Kai

Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.


2008 ◽  
Vol 294 (3) ◽  
pp. F562-F570 ◽  
Author(s):  
Vani Nilakantan ◽  
Cheryl Maenpaa ◽  
Guangfu Jia ◽  
Richard J. Roman ◽  
Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK1 cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK1 cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release ( P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 μM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 μM) also inhibited cytotoxicity significantly ( P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase ( P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells ( P < 0.05). This was abolished in the presence of HET-0016 ( P < 0.05) or MnTMPyP ( P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


Sign in / Sign up

Export Citation Format

Share Document