scholarly journals Higher-order semi-layerwise models for doubly curved delaminated composite shells

Author(s):  
András Szekrényes

Abstract This work deals w ith the development and extension of higher-order models for delaminated doubly curved composite shells with constant radii of curvatures. The mechanical model is based on the method of four equivalent single layers and the system of exact kinematic conditions. A remarkable addition of this work compared to some previous ones, is a modified and improved continuity condition between the delaminated and undelaminated parts of the shell. Using the principle of virtual work, the equilibrium equations of the shell systems are brought to the stage and solved by using the classical Lévy plate formulation under simply supported conditions. Four different scenarios of elliptic and hyperbolic delaminated shells are investigated providing the solutions for the mechanical fields as well as for the J-integral. The analytical results are compared to 3D finite element calculations, and excellent agreement was obtained for the displacement components and normal stresses. On the contrary, it was found that the transverse shear stresses are captured quite differently by the proposed method and the finite element models. Although the role of shear stresses should not be underrated, they seem to be marginal because the distributions of the J-integral components are in very good agreement with the numerically determined energy release rates.

Author(s):  
Aniket Chanda ◽  
Utkarsh Chandel ◽  
Rosalin Sahoo ◽  
Neeraj Grover

In the present study, the electro-mechanical responses of smart laminated composite plates with piezoelectric materials are derived using a two-dimensional (2 D) displacement-based non-polynomial higher-order shear deformation theory. The kinematics of the mathematical model incorporates the deformation of laminates which account for the effects of transverse shear deformation and a non-linear variation of the in-plane displacements using inverse sine hyperbolic function of the thickness coordinate. The equilibrium equations are obtained using the minimization of energy principle known as the principle of minimum potential energy (PMPE) which is also based on a variational approach and the solutions are obtained using Navier’s solution technique for diaphragm supported smart laminated composite plates. The responses obtained in the form of deflection and stresses are compared with three dimensional (3 D) solutions and also with different polynomial and non-polynomial based higher-order theories in the literature. The transverse shear stresses are obtained using 3 D equilibrium equations of elasticity to enhance the accuracy of the present results. Various examples are numerically solved to establish the efficiency of the present model.


2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


2000 ◽  
Vol 68 (6) ◽  
pp. 869-877 ◽  
Author(s):  
M. Cho ◽  
J.-S. Kim

A higher-order zig-zag theory has been developed for laminated composite plates with multiple delaminations. By imposing top and bottom surface transverse shear stress-free conditions and interface continuity conditions of transverse shear stresses including delaminated interfaces, the displacement field with minimal degree-of-freedoms are obtained. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Through the dynamic version of variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. The delaminated beam finite element is implemented to evaluate the performance of the newly developed theory. Linear buckling and natural frequency analysis demonstrate the accuracy and efficiency of the present theory. The present higher-order zig-zag theory should work as an efficient tool to analyze the static and dynamic behavior of the composite plates with multiple delaminations.


Author(s):  
Ashkan Afnani ◽  
Vida Niki ◽  
R. Emre Erkmen

In this study, a finite element formulation is developed for the elastic analysis of thin-walled curved beams. Using a second-order rotation tensor, the strains of the deformed configuration are calculated in terms of the displacement values and the initial curvature. The principle of virtual work is then used to obtain the nonlinear equilibrium equations, based on which a finite element beam formulation is developed. The accuracy of the method is confirmed through comparisons with test results and shell-type finite element formulations and other curved beam formulations from the literature. It is also shown that the results of the developed formulation are very accurate for cases where initial curvature is very large.


Sign in / Sign up

Export Citation Format

Share Document