Elastoplastic nonlinear analysis of functionally graded beams utilizing the symplectic method

Author(s):  
Wei Peng ◽  
Tianhu He
2008 ◽  
Vol 08 (01) ◽  
pp. 131-159 ◽  
Author(s):  
RECEP GUNES ◽  
J. N. REDDY

Geometrically nonlinear analysis of functionally graded circular plates subjected to mechanical and thermal loads is carried out in this paper. The Green–Lagrange strain tensor in its entirety is used in the analysis. The locally effective material properties are evaluated using homogenization method which is based on the Mori–Tanaka scheme. In the case of thermally loaded plates, the temperature variation through the thickness is determined by solving a steady-state heat transfer (i.e. energy) equation. As an example, a functionally gradient material circular plate composed of zirconium and aluminum is used and results are presented in graphical form.


2012 ◽  
Vol 166-169 ◽  
pp. 824-827 ◽  
Author(s):  
Y Z Yang

This paper presents symplectic method for the derivation of exact solutions of functionally graded piezoelectric beam with the material properties varying exponentially both along the axial and transverse coordinates. In the approach, the related equations and formulas are developed in terms of dual equations, which can be solved by variables separation and symplectic expansion in Hamiltonian system. To verify advantages of the method, numerical examples of bi-directional functionally piezoelectric beam are discussed.


Sign in / Sign up

Export Citation Format

Share Document