Effects of a high-volume static stretching programme on plantar-flexor muscle strength and architecture

Author(s):  
Kaoru Yahata ◽  
Andreas Konrad ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Riku Yoshida ◽  
...  
2018 ◽  
Vol 31 (6) ◽  
pp. 1201-1209
Author(s):  
N. Ekin Akalan ◽  
Shavkat Kuchimov ◽  
Adnan Apti ◽  
Yener Temelli ◽  
Merve Ören ◽  
...  

2016 ◽  
Vol Volume 11 ◽  
pp. 1661-1674 ◽  
Author(s):  
Helô André ◽  
Filomena Carnide ◽  
Edgar Borja ◽  
Fátima Ramalho ◽  
Rita Santos-Rocha ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247885
Author(s):  
David Hernández-Guillén ◽  
Catalina Tolsada-Velasco ◽  
Sergio Roig-Casasús ◽  
Elena Costa-Moreno ◽  
Irene Borja-de-Fuentes ◽  
...  

Background and purpose Ankle function declines with age. The objective of this study was to investigate the association between ankle function and balance in older adults, with a focus on range of motion (ROM) and strength. Methods This was a cross-sectional study that included 88 healthy community-dwelling older adults. Ankle mobility was measured while bearing weight (lunge test) and not bearing weight. The plantar-flexor muscle strength was assessed using a hand-held dynamometer. Balance was measured in terms of dynamic balance and mobility (timed up and go test), monopodal and bipodal static balance with open and closed eyes (single-leg stand test and platform measures), and margins of stability (functional reach test). Linear correlation and multiple regression analyses were conducted with a 95% CI. Results and discussion Most participants had limited ankle mobility (n = 75, 86%). Weight-bearing ankle dorsiflexion ROM was the strongest predictor of dynamic balance and included general mobility and stability (Radj2 = [0.34]; β = [-0.50]). In contrast, plantar-flexor muscle strength was a significant predictor of static standing balance with open eyes (Radj2 = [0.16–0.2]; β = [0.29–0.34]). Overall, weight-bearing ankle dorsiflexion ROM was a more representative measure of balance and functional performance; however, a non-weight-bearing mobility assessment provides complementary information. Therefore, both measures can be used in clinical practice. Conclusion This study supports the concept that ankle mobility contributes to the performance of dynamic tasks, while the plantar-flexor muscle strength helps to develop a standing static balance. Identification of alterations in ankle function is warranted and may assist in the design of tailored interventions. These interventions can be used in isolation or to augment conventional balance training in order to improve balance performance in community-dwelling older adults.


Author(s):  
Bo-Jhang Lyu ◽  
Chia-Lun Lee ◽  
Wen-Dien Chang ◽  
Nai-Jen Chang

Vibration rolling (VR) has emerged as a self-myofascial release (SMR) tool to aid exercise performance when warming up. However, the benefits of VR on exercise performance when combined with dynamic muscle contraction are unclear. The purpose of this study was to investigate the immediate effects of the combination of VR with dynamic muscle contraction (DVR), VR, and static stretching (SS) during warm-up on range of motion (ROM), proprioception, muscle strength of the ankle, and agility in young adults. In this crossover design study, 20 recreationally active adults without musculoskeletal disorders completed three test sessions in a randomized order, with 48 h of rest between each session. Participants completed one warm-up intervention and its measurements on the same day; different warm-up interventions and measurements were performed on each of the three days. The measurements included ankle dorsiflexion and plantarflexion ROM, ankle joint proprioception, muscle strength, and agility. After DVR and VR intervention, ankle dorsiflexion ROM (both DVR and VR, p < 0.001), plantarflexion ROM (both DVR and VR, p < 0.001), plantar flexor muscle strength (DVR, p = 0.007; VR, p < 0.001), and agility (DVR, p = 0.016; VR, p = 0.007) significantly improved; after SS intervention, ankle dorsiflexion and plantar flexion ROM (dorsiflexion, p < 0.001; plantar flexion, p = 0.009) significantly improved, but muscle strength and agility were not enhanced. Compared with SS, DVR and VR significantly improved ankle plantar flexor muscle strength (p = 0.008 and p = 0.001, respectively). Furthermore, DVR significantly improved ankle dorsiflexion compared with VR (p < 0.001) and SS (p < 0.001). In conclusion, either DVR, VR, or SS increased ankle ROM, but only DVR and VR increased muscle strength and agility. In addition, DVR produced considerable increases in ankle dorsiflexion. These findings may have implications for warm-up prescription and implementation in both rehabilitative and athletic practice settings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Riku Yoshida ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
Yuta Murakami ◽  
...  

The purpose of this study was to compare two static stretching (SS) training programs at high-intensity (HI-SS) and low-intensity (LI-SS) on passive and active properties of the plantar flexor muscles. Forty healthy young men were randomly allocated into three groups: HI-SS intervention group (n = 14), LI-SS intervention group (n = 13), and non-intervention control group (n = 13). An 11-point numerical scale (0–10; none to very painful stretching) was used to determine SS intensity. HI-SS and LI-SS stretched at 6–7 and 0–1 intensities, respectively, both in 3 sets of 60 s, 3×/week, for 4 weeks. Dorsiflexion range of motion (ROM), gastrocnemius muscle stiffness, muscle strength, drop jump height, and muscle architecture were assessed before and after SS training program. The HI-SS group improved more than LI-SS in ROM (40 vs. 15%) and decreased muscle stiffness (−57 vs. −24%), while no significant change was observed for muscle strength, drop jump height, and muscle architecture in both groups. The control group presented no significant change in any variable. Performing HI-SS is more effective than LI-SS for increasing ROM and decreasing muscle stiffness of plantar flexor muscles following a 4-week training period in young men. However, SS may not increase muscle strength or hypertrophy, regardless of the stretching discomfort intensity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Riku Yoshida ◽  
Yuta Murakami ◽  
...  

A single use of a vibration foam roller likely increases the range of motion (ROM) without decreasing muscle strength and athletic performance. However, to date, no study compared the effects of a vibration roller with and without rolling on various parts of the plantar flexor muscle. Therefore, this study aimed to compare the effects of the vibration foam roller with rolling or without rolling at the muscle-tendon junction (MTJ) or the muscle belly on dorsiflexion (DF) ROM, passive torque at DF ROM, shear elastic modulus, muscle strength, and jump performance. Fifteen healthy young males performed the following three conditions: (1) vibration rolling over the whole muscle-tendon unit, (2) static vibration on muscle belly, and (3) static vibration on MTJ for three-set 60-s vibration in random order. In this study, DF ROM, passive torque, shear elastic modulus, muscle strength, and single-leg drop jump were measured before and immediately after the interventions. The DF ROM and passive torque at DF ROM were increased after all three conditions, whereas the shear elastic modulus was decreased after vibration rolling and static vibration on the muscle belly, but not following static vibration of the MTJ. In addition, there were no significant changes in muscle strength and jump performance in any group. Our results showed that vibration with rolling or static vibration on muscle belly could be effective to improve ROM and muscle stiffness without adverse effects of muscle strength and athletic performance.


2004 ◽  
Vol 96 (4) ◽  
pp. 1451-1458 ◽  
Author(s):  
P. A. Tesch ◽  
J. T. Trieschmann ◽  
A. Ekberg

In an effort to simulate the compromised function and atrophy of lower limb muscles experienced by astronauts after spaceflight, 21 men and women age 30-56 yr were subjected to unilateral lower limb unloading for 5 wk. Whereas 10 of these subjects performed unilateral knee extensor resistance exercise (ULRE) two or three times weekly, 11 subjects (UL) refrained from training. The exercise regimen consisted of four sets of seven maximal actions, using an apparatus that offers concentric and eccentric resistance by utilizing the inertia of rotating flywheel(s). Knee extensor muscle strength was measured before and after UL and ULRE, and knee extensor and ankle plantar flexor muscle volumes were determined by means of magnetic resonance imaging. Surface electromyographic activity measured after UL inferred increased muscle use to perform a given motor task. UL induced an 8.8% decrease ( P < 0.05) in knee extensor muscle volume. After ULRE and as a result of only ∼16 min of maximal contractile activity over the 5-wk course, muscle volume increased 7.7% ( P < 0.05). Muscle strength decreased 24-32% ( P < 0.05) in response to UL. Group ULRE showed maintained ( P > 0.05) strength. Ankle plantar flexor muscle volume of the unloaded limb decreased ( P < 0.05) in both groups (UL 10.5%; ULRE 11.1%). In neither group did the right weight-bearing limb show any change ( P > 0.05) in muscle volume or strength. The results of this study provide evidence that resistance exercise not only may offset muscle atrophy but is in fact capable of promoting marked hypertrophy of chronically unloaded muscle.


Sign in / Sign up

Export Citation Format

Share Document