Characterization of the effects of Cl− channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl− channels

2014 ◽  
Vol 467 (7) ◽  
pp. 1417-1430 ◽  
Author(s):  
Yani Liu ◽  
Huiran Zhang ◽  
Dongyang Huang ◽  
Jinlong Qi ◽  
Jiaxi Xu ◽  
...  
Keyword(s):  
1991 ◽  
Vol 260 (3) ◽  
pp. C664-C669 ◽  
Author(s):  
S. K. Sullivan ◽  
K. Swamy ◽  
M. Field

Development of reliable expression systems for use in identification and functional characterization of proteins required for secretory Cl channel activity is key to understanding the molecular basis of cystic fibrosis (CF). Until now, heterologous expression of epithelial Cl channels had not been accomplished. We show here that Xenopus oocytes express an adenosine 3',5'-cyclic monophosphate (cAMP)-activated Cl conductance after injection of mRNA from shark rectal gland. Current through this conductance was rapidly activated by intracellular application of cAMP, reversed near the chloride equilibrium potential (ECl), blocked by the Cl channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoate, and was not affected by preincubation with the intracellular calcium buffer bis-(2-amino-5-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, a condition that prohibits activation of the endogenous Ca-activated Cl conductance.


1994 ◽  
Vol 267 (4) ◽  
pp. C1095-C1102 ◽  
Author(s):  
J. J. Zhang ◽  
T. J. Jacob

In this report, we present the characteristics of a Cl- channel found in lens fiber cells. The single channel has a conductance of 17 pS, a linear current-voltage curve, is activated by ATP or strong depolarization and is blocked by verapamil, quinidine, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 5-nitro-2-(3- phenylpropylamino)benzoate, dideoxyforskolin, and tamoxifen. These properties are similar to those reported for a volume-activated Cl- channel associated with the multidrug resistance (MDR) gene product, P glycoprotein (24). Confirming this connection, we demonstrate that our lens Cl- channel is inhibited by an antibody to P glycoprotein. The data we present here may, therefore, be the first characterization of the single channel activity of the Cl- channel associated with P glycoprotein.


1989 ◽  
Vol 256 (4) ◽  
pp. C902-C912 ◽  
Author(s):  
R. J. Bridges ◽  
R. T. Worrell ◽  
R. A. Frizzell ◽  
D. J. Benos

We studied blockade by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) of a secretory Cl- channel from colonic enterocyte plasma membrane vesicles incorporated into planar lipid bilayer membranes. Except for intermittent long-lived closed periods (100 ms to several min), the control channel open probability (Po) was greater than 90%. DNDS, added to the cis or vesicle-containing side, which corresponds to the outer membrane side of the channel, caused a dramatic increase in the number of current transitions from the open-to-closed state. DNDS caused a concentration-dependent decrease in Po with a maximum inhibition of 95 +/- 2.0% and a half-maximal inhibitory concentration of 3.3 +/- 1.4 microM. DNDS added to the trans side of the channel had no effect on either the single-channel conductance or kinetic behavior of the channel. Kinetic analysis revealed that DNDS blockade from the cis side could be explained by a linear, closed-open-blocked, kinetic scheme. The estimated DNDS block rate constants were kon = 3.2 X 10(7) M-1.s-1 and koff = 52 s-1, yielding an equilibrium dissociation constant (KD) of 2.1 +/- 0.38 microM, similar to the Ki for inhibition of Po. The effects of DNDS were fully reversible after perfusion of the cis compartment with DNDS-free solution. In contrast, the covalently reactive 4,4'-diisothiocyano-substituted stilbene disulfonate caused an irreversible blockade of the Cl- channel.


1995 ◽  
Vol 307 (3) ◽  
pp. 713-718 ◽  
Author(s):  
C De Greef ◽  
J Sehrer ◽  
F Viana ◽  
K van Acker ◽  
J Eggermont ◽  
...  

It has been proposed that P-glycoprotein, the product of the human MDR1 gene, may function not only as a drug transporter but, depending on the conditions, as a volume-activated Cl- channel [Valverde, Diaz, Sepúlveda, Gill, Hyde and Higgins (1992) Nature (London) 355, 830-833; Gill, Hyde, Higgins, Valverde, Mintenig and Sepúlveda (1992) Cell 71, 23-32]. To verify this hypothesis, we have compared volume-activated Cl- currents with the level of MDR1 mRNA and its protein product in the human KB3 (epitheloid lung cancer) and HeLa cell lines. The related MDR2 was also included to find out whether it could account for observed discrepancies between Cl- current and MDR1 expression. A 40% decrease in osmolarity evoked a Cl- current in both cell types (at +80 mV: 50.3 +/- 4.3 pA/pF in KB3, n = 13; 28.2 +/- 3.3 pA/pF in HeLa, n = 16). The blocking of this current in both cell types by 5-nitro-2-(3-phenylpropylamino)-benzoic acid and by 1,9-dideoxyforskolin is similar to that of the presumed P-glycoprotein associated Cl- channel. As measured by reverse-transcriptase polymerase chain reaction, KB3 cells expressed only an extremely small amount of the messengers for MDR1 and MDR2. The signal observed for MDR1 in HeLa cells was at least an order of magnitude more intense than in KB3 cells, while MDR2 mRNA was undetectable. A clear difference in MDR1 expression between KB3 and HeLa was also observed at the protein level. These data are difficult to reconcile with the hypothesis that in HeLa and KB3 cells MDR1- or MDR2- encoded P-glycoproteins are associated with volume-activated Cl- channels.


1992 ◽  
Vol 100 (4) ◽  
pp. 573-591 ◽  
Author(s):  
D N Sheppard ◽  
M J Welsh

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that is regulated by cAMP-dependent phosphorylation and by intracellular ATP. Intracellular ATP also regulates a class of K+ channels that have a distinct pharmacology: they are inhibited by sulfonylureas and activated by a novel class of drugs called K+ channel openers. In search of modulators of CFTR Cl- channels, we examined the effect of sulfonylureas and K+ channel openers on CFTR Cl- currents in cells expressing recombinant CFTR. The sulfonylureas, tolbutamide and glibenclamide, inhibited whole-cell CFTR Cl- currents at half-maximal concentrations of approximately 150 and 20 microM, respectively. Inhibition by both agents showed little voltage dependence and developed slowly; > 90% inhibition occurred 3 min after adding 1 mM tolbutamide or 100 microM glibenclamide. The effect of tolbutamide was reversible, while that of glibenclamide was not. In contrast to their activating effect on K+ channels, the K+ channel openers, diazoxide, BRL 38227, and minoxidil sulfate inhibited CFTR Cl- currents. Half-maximal inhibition was observed at approximately 250 microM diazoxide, 50 microM BRL 38227, and 40 microM minoxidil sulfate. The rank order of potency for inhibition of CFTR Cl- currents was: glibenclamide < BRL 38227 approximately equal to minoxidil sulfate > tolbutamide > diazoxide. Site-directed mutations of CFTR in the first membrane-spanning domain and second nucleotide-binding domain did not affect glibenclamide inhibition of CFTR Cl- currents. However, when part of the R domain was deleted, glibenclamide inhibition showed significant voltage dependence. These agents, especially glibenclamide, which was the most potent, may be of value in identifying CFTR Cl- channels. They or related analogues might also prove to be of value in treating diseases such as diarrhea, which may involve increased activity of the CFTR Cl- channel.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Hyo Eun Lee ◽  
Jun‐Ho Lee ◽  
Minkyu Shin ◽  
Moochang Hong ◽  
Yangseok Kim ◽  
...  
Keyword(s):  

Author(s):  
Hiroshi Matsuura ◽  
Akiko Kojima ◽  
Yutaka Fukushima ◽  
Yu Xie ◽  
Xinya Mi ◽  
...  

The organic anion transporter SLCO2A1 constitutes an essential core component of the ATP-conductive large-conductance anion (Maxi-Cl) channel. Our previous experiments using Langendorff-perfused mouse hearts showed that the Maxi-Cl channel contributes largely to the release of ATP into the coronary effluent observed during 10-min reperfusion following a short period (6 min) of oxygen-glucose deprivation. The present study examined the effect of endogenous ATP released via Maxi-Cl channels on the left ventricular contractile function of Langendorff-perfused mouse hearts, using a fluid-filled balloon connected to a pressure transducer. After the initial 30-min stabilization period, the heart was then perfused with oxygen-glucose-deprived Tyrode solution for 6 min, which was followed by a 10-min perfusion with oxygenated normal Tyrode solution in the absence and presence of an ATP-hydrolyzing enzyme, apyrase, and/or an adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). In the absence of apyrase and DPCPX, the left ventricular developed pressure (LVDP) decreased from a baseline value of 72.3 ± 7.1 to 57.5 ± 5.5 mmHg (n = 4) at the end of 6-min perfusion with oxygen-glucose-deprived Tyrode solution, which was followed by a transient increase to 108.5 ± 16.5 mmHg during subsequent perfusion with oxygenated normal Tyrode solution. However, in the presence of apyrase and DPCPX, the LVDP decreased to the same degree during 6-min perfusion with oxygen-glucose-deprived Tyrode solution, but failed to exhibit a transient increase during a subsequent perfusion with oxygenated normal Tyrode solution. These results strongly suggest that endogenous ATP released through Maxi-Cl channels contributes to the development of transient positive inotropy observed during reperfusion after short-period hypoxia/ischemia in the heart.


1993 ◽  
Vol 265 (1) ◽  
pp. C72-C78 ◽  
Author(s):  
H. Sunose ◽  
K. Ikeda ◽  
Y. Saito ◽  
A. Nishiyama ◽  
T. Takasaka

Single-channel currents of the luminal membrane of marginal cells dissected from the guinea pig cochlea were investigated using the patch-clamp technique. Nonselective cation channels having a linear conductance of 27 pS were activated by depolarization, cytoplasmic Ca2+, and cytoplasmic acidification. Cytoplasmic ATP inactivated the channel. A mixture of 3-isobutyl-1-methylxanthine and forskolin activated a small-conductance Cl channel in the cell-attached mode. On excision in the inside-out mode, the Cl channel was inactivated, but it was reactivated by a cytoplasmic catalytic subunit of protein kinase A with ATP. This Cl channel had a linear conductance of 12 pS, and its activity was little affected by voltage. The sequence of permeation by anions was Br- > Cl > I-. The Cl channel blocker diphenylamine-2-carboxylic acid (3 mM) completely blocked the channel, but 5-nitro-2-(3-phenylpropylamino)-benzoic acid (50 microM) blocked it only partially. The above-mentioned characteristics are similar to those of the well-demonstrated Cl- channel, cystic fibrosis transmembrane regulator.


1993 ◽  
Vol 264 (3) ◽  
pp. L229-L235
Author(s):  
J. Bijman ◽  
W. Dalemans ◽  
M. Kansen ◽  
J. Keulemans ◽  
E. Verbeek ◽  
...  

The properties of the cystic fibrosis gene product (CFTR) were studied by expression of cloned cDNA in different cell systems. Infection of both simian fibroblast (Vero) cells and immortalized CF nasal polyp cells (NCF3A) with a vaccinia virus encoding CFTR induced forskolin-induced Cl- permeability and low-conductance (8 pS) Cl- channels. By stable transfection of the rat intestinal crypt-derived cell line IEC-6 we have isolated a clone, IEC-CF7, which expresses CFTR mRNA and antigen. IEC-CF7 cells, but not IEC-6, display forskolin-induced Cl- permeability and multiple linear low-conductance (+/- 8 pS) Cl- channels in cell-attached membrane patches. In excised patches of IEC-CF7 cells, low-conductance Cl- channels could be activated by addition of the catalytic subunit of the adenosine 3',5'-cyclic monophosphate-dependent protein kinase A (PKA) plus ATP. During bath fluid replacement studies, the activated low-conductance channel remained active in the absence of ATP at room temperature and showed saturation kinetics. Rectifying (32 pS) Cl- channels were not observed in either IEC-6 cells or IEC-CF7 cells, indicating that there is no relation between CFTR expression and the incidence of this channel. Our data strongly support the conclusion that CFTR can act as a low-conductance Cl- channel, gated by PKA. The IEC-6-derived cell line IEC-CF7 may prove to be a useful model in the study of CFTR function because of the absence of 32-pS Cl- channel activity and its potential for differentiation.


1994 ◽  
Vol 266 (4) ◽  
pp. F543-F553 ◽  
Author(s):  
V. Poncet ◽  
M. Tauc ◽  
M. Bidet ◽  
P. Poujeol

Using the patch clamp technique on the apical membrane of primary cultures of rabbit distal bright convoluted tubule cells (DCTb), two types of Cl- channel were identified. A small channel of 9 pS was observed in 9% of the patches. Cells pretreated with 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) or 5 microM forskolin increased the expression of Cl- channels by 26 and 37%, respectively. In cell-attached and excised inside-out patches, the current-voltage (I-V) relationships of the 9-pS channel were linear. In only 1 out of 47 active patches was the small-conductance Cl- channel still active 1 h after membrane excision. The addition of 0.1 microM of the catalytic subunit protein kinase A with 2 mM ATP to the cytoplasmic side restored channel activity in 8 out of 15 excised membrane patches. In 5 out of 467 patches of stimulated or nonstimulated cells, a larger Cl- conductance of 30 pS was also recorded. In excised inside-out patches this channel outwardly rectified and was activated by strong depolarization. In cultured DCTb cells, the small-conductance, cAMP-activated Cl- channel shares many properties with the cystic fibrosis transmembrane conductance regulator. Our results suggest that at least the small-conductance channel may participate in Cl- secretion across the apical membrane of DCTb in primary culture. This secretion may increase the rate of the apical Cl-/HCO3- exchange indirectly by enhancing the inwardly-directed Cl- gradient.


Sign in / Sign up

Export Citation Format

Share Document