The transmembrane protein, Tincar, is involved in the development of the compound eye in Drosophila melanogaster

2005 ◽  
Vol 215 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Yuki Hirota ◽  
Kazunobu Sawamoto ◽  
Kuniaki Takahashi ◽  
Ryu Ueda ◽  
Hideyuki Okano
RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64266-64270 ◽  
Author(s):  
Bhupendra Shravage ◽  
Shefali Ramteke ◽  
Prasad Kulkarni ◽  
Dhananjay Bodas

Top left: SEM of compound eye of Drosophila melanogaster replica in PDMS. Bottom left: SEM of MCF-7 cell grown in the micro well. Bottom right: confocal of the MCF-7 cells grown for 72 h.


1988 ◽  
Vol 8 (12) ◽  
pp. 5206-5215 ◽  
Author(s):  
T D Dreesen ◽  
D H Johnson ◽  
S Henikoff

The brown gene of Drosophila melanogaster is required for deposition of pteridine pigments in the compound eye and other tissues. We isolated a ca. 150-kilobase region including brown by microdissection and chromosome walking using cosmids. Among the cDNAs identified by hybridization to the cosmids, one class hybridized to a genomic region that is interrupted in two brown mutants, bw and In(2LR)CK, and to 2.8- and 3.0-kilobase poly(A)+ RNAs which are altered in the mutants. Nucleotide sequencing of these cDNAs revealed that the two transcripts differ as a consequence of alternative poly(A) addition and that both encode the same predicted protein of 675 amino acids. Searches of available databases for amino acid sequence similarities detected a striking overall similarity of this predicted protein to that of the D. melanogaster white gene. The N-terminal portion aligned with the HisP family of membrane-associated ATP-binding proteins, most of which are subunits of active transport complexes in bacteria, and to two regions of the multidrug resistance P-glycoprotein. The C-terminal portion showed a structural similarity to integral membrane components of the same complexes. Taken together with earlier biochemical evidence that brown and white gene products are necessary for uptake of a pteridine precursor and genetic evidence that brown and white proteins interact, our results are consistent with suggestions that these proteins are subunits of a pteridine precursor permease.


1994 ◽  
Vol 14 (2) ◽  
pp. 944-950 ◽  
Author(s):  
J L Wrana ◽  
H Tran ◽  
L Attisano ◽  
K Arora ◽  
S R Childs ◽  
...  

A transmembrane protein serine/threonine kinase, Atr-I, that is structurally related to receptors for members of the transforming growth factor-beta (TGF-beta) family has been cloned from Drosophila melanogaster. The spacing of extracellular cysteines and the cytoplasmic domain of Atr-I resemble most closely those of the recently described mammalian type I receptors for TGF-beta and activin. When expressed alone in test cells, Atr-I is unable to bind TGF-beta, activin, or bone morphogenetic protein 2. However, Atr-I binds activin efficiently when coexpressed with the distantly related Drosophila activin receptor Atr-II, with which it forms a heteromeric complex. Atr-I can also bind activin in concert with mammalian activin type II receptors. Two alternative forms of Atr-I have been identified that differ in an ectodomain region encompassing the cysteine box motif characteristic of receptors in this family. Comparison of Atr-I with other type I receptors reveals the presence of a characteristic 30-amino-acid domain immediately upstream of the kinase region in all these receptors. This domain, of unknown function, contains a repeated Gly-Ser sequence and is therefore referred to as the GS domain. Maternal Atr-I transcripts are abundant in the oocyte and widespread during embryo development and in the imaginal discs of the larva. The structural properties, binding specificity, and dependence on type II receptors define Atr-I as an activin type I receptor from D. melanogaster. These results indicate that the heteromeric kinase structure is a general feature of this receptor family.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2974 ◽  
Author(s):  
P. Githure M’Angale ◽  
Brian E. Staveley

BackgroundBax inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective transmembrane protein that acts as a suppressor ofBax-induced apoptosis by regulation of endoplasmic reticulum stress-induced cell death. We knocked downBI-1in the sensitivedopa decarboxylase(Ddc) expressing neurons ofDrosophila melanogasterto investigate its neuroprotective functions. We additionally sought to rescue theBI-1-induced phenotypes by co-expression with the pro-survivalBuffyand determined the effect ofBI-1knockdown on the neurodegenerative α-synuclein-induced Parkinson disease (PD) model.MethodsWe used organismal assays to assess longevity of the flies to determine the effect of the altered expression ofBI-1in theDdc-Gal4-expressing neurons by employing two RNAi transgenic fly lines. We measured the locomotor ability of these RNAi lines by computing the climbing indices of the climbing ability and compared them to a control line that expresses thelacZtransgene. Finally, we performed biometric analysis of the developing eye, where we counted the number of ommatidia and calculated the area of ommatidial disruption.ResultsThe knockdown ofBI-1in these neurons was achieved under the direction of theDdc-Gal4transgene and resulted in shortened lifespan and precocious loss of locomotor ability. The co-expression ofBuffy, the Drosophila anti-apoptotic Bcl-2 homologue, withBI-1-RNAiresulted in suppression of the reduced lifespan and impaired climbing ability. Expression of human α-synucleinin Drosophila dopaminergic neurons results in neuronal degeneration, accompanied by the age-dependent loss in climbing ability. We exploited this neurotoxic system to investigate possible BI-1 neuroprotective function. The co-expression of α-synucleinwithBI-1-RNAiresults in a slight decrease in lifespan coupled with an impairment in climbing ability. In supportive experiments, we employed the neuron-rich Drosophila compound eye to investigate subtle phenotypes that result from altered gene expression. The knockdown ofBI-1in the Drosophila developing eye under the direction of theGMR-Gal4transgene results in reduced ommatidia number and increased disruption of the ommatidial array. Similarly, the co-expression ofBI-1-RNAiwithBuffyresults in the suppression of the eye phenotypes. The expression of α-synucleinalong with the knockdown ofBI-1resulted in reduction of ommatidia number and more disruption of the ommatidial array.ConclusionKnockdown ofBI-1in the dopaminergic neurons of Drosophila results in a shortened lifespan and premature loss in climbing ability, phenotypes that appear to be strongly associated with models of PD in Drosophila, and which are suppressed upon overexpression ofBuffyand worsened by co-expression with α-synuclein. This suggests thatBI-1is neuroprotective and its knockdown can be counteracted by the overexpression of the pro-survivalBcl-2homologue.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009460
Author(s):  
Abhishek Kumar Mishra ◽  
Cornelia Fritsch ◽  
Roumen Voutev ◽  
Richard S. Mann ◽  
Simon G. Sprecher

Visual perception of the environment is mediated by specialized photoreceptor (PR) neurons of the eye. Each PR expresses photosensitive opsins, which are activated by a particular wavelength of light. In most insects, the visual system comprises a pair of compound eyes that are mainly associated with motion, color or polarized light detection, and a triplet of ocelli that are thought to be critical during flight to detect horizon and movements. It is widely believed that the evolutionary diversification of compound eye and ocelli in insects occurred from an ancestral visual organ around 500 million years ago. Concurrently, opsin genes were also duplicated to provide distinct spectral sensitivities to different PRs of compound eye and ocelli. In the fruit fly Drosophila melanogaster, Rhodopsin1 (Rh1) and Rh2 are closely related opsins that originated from the duplication of a single ancestral gene. However, in the visual organs, Rh2 is uniquely expressed in ocelli whereas Rh1 is uniquely expressed in outer PRs of the compound eye. It is currently unknown how this differential expression of Rh1 and Rh2 in the two visual organs is controlled to provide unique spectral sensitivities to ocelli and compound eyes. Here, we show that Homothorax (Hth) is expressed in ocelli and confers proper rhodopsin expression. We find that Hth controls a binary Rhodopsin switch in ocelli to promote Rh2 expression and repress Rh1 expression. Genetic and molecular analysis of rh1 and rh2 supports that Hth acts through their promoters to regulate Rhodopsin expression in the ocelli. Finally, we also show that when ectopically expressed in the retina, hth is sufficient to induce Rh2 expression only at the outer PRs in a cell autonomous manner. We therefore propose that the diversification of rhodpsins in the ocelli and retinal outer PRs occurred by duplication of an ancestral gene, which is under the control of Homothorax.


Genetics ◽  
1989 ◽  
Vol 122 (2) ◽  
pp. 429-438
Author(s):  
S B Shepard ◽  
S A Broverman ◽  
M A Muskavitch

Abstract A dramatic example of a phenotypic interaction that involves neurogenic loci during Drosophila imaginal development is the synergistic impact of split (spl), a recessive allele of the Notch locus, and E(spl)D, a dominant gain-of-function allele of the Enhancer of split locus, on morphogenesis of the compound eye. Screens for mutations that relieve the enhancing effect of E(spl)D on spl have yielded three classes of mutations: intragenic revertants of the E(spl)D allele, extragenic suppressors that are allelic to the neurogenic gene Delta (Dl) and unlinked extragenic modifiers. Analysis of the suppression of the spl-E(spl)D interaction by various Dl alleles indicates that this modification is sensitive to the dosage of the Dl locus. This tripartite interaction illustrates the combinatorial action of N, Dl and E(spl) during imaginal development.


Sign in / Sign up

Export Citation Format

Share Document