scholarly journals A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost

2018 ◽  
Vol 174 (1-2) ◽  
pp. 1-47 ◽  
Author(s):  
Giovanni Conforti
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Saad Althobati ◽  
Jehad Alzabut ◽  
Omar Bazighifan

The oscillation of non-linear neutral equations contributes to many applications, such as torsional oscillations, which have been observed during earthquakes. These oscillations are generally caused by the asymmetry of the structures. The objective of this work is to establish new oscillation criteria for a class of nonlinear even-order differential equations with damping. We employ different approach based on using Riccati technique to reduce the main equation into a second order equation and then comparing with a second order equation whose oscillatory behavior is known. The new conditions complement several results in the literature. Furthermore, examining the validity of the proposed criteria has been demonstrated via particular examples.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


Author(s):  
Владимир Дмитриевич Лисейкин ◽  
Виктор Иванович Паасонен

Проведено сравнение качества решений модельного уравнения второго порядка с малым параметром, полученных по трем различным разностным схемам на специальных адаптивных сетках, явно задаваемых координатным преобразованием, а также на равномерных сетках в новых переменных, соответствующих этому преобразованию. Исследуются схемы второго порядка точности с диагональным преобладанием и без него и простейшая противопотоковая схема. На основе оценок погрешностей сделаны прогнозы относительно свойств решений, подтвержденные анализом и численными экспериментами. Показано, что схема второго порядка аппроксимации с диагональным преобладанием сходится равномерно по малому параметру со вторым порядком лишь в частном случае, когда коэффициент при старшей производной мал только в слое; если же он мал также и вне слоя, порядок сходимости первый. Установлено также, что схема без диагонального преобладания имеет существенно более качественные решения без осцилляций в новых переменных на равномерной сетке, чем в соответствующих им исходных физических координатах. В противоположность ей схемы с диагональным преобладанием не чувствительны к выбору системы координат. The paper compares solution quality to some model second- order equation with a small parameter obtained through three different schemes both on special adaptive grids specified explicitly by coordinate transformations eliminating layers and on uniform grids in a new coordinate related to the transformations. The schemes up to second order in physical and transformation variables both with a diagonal and not diagonal dominance and the simplest counter-flow scheme are analyzed. Predictions of a solution behavior based on estimates of solution errors are described, which are confirmed by numerical experiments and proofs. It is established, in particular, that the scheme of the second order with a diagonal dominance converges uniformly if the coefficient before the second derivative is small at the points of the boundary layer only. It was also demonstrated for the schemes without a diagonal dominance, mach better solutions without oscillations are obtained on uniform grids in new variables than on corresponding adaptive grids in the original physical coordinates.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


Author(s):  
W. N. Everitt

SynopsisThis paper considers an extension of the following inequality given in the book Inequalities by Hardy, Littlewood and Polya; let f be real-valued, twice differentiable on [0, ∞) and such that f and f are both in the space fn, ∞), then f′ is in L,2(0, ∞) andThe extension consists in replacing f′ by M[f] wherechoosing f so that f and M[f] are in L2(0, ∞) and then seeking to determine if there is an inequality of the formwhere K is a positive number independent of f.The analysis involves a fourth-order differential equation and the second-order equation associated with M.A number of examples are discussed to illustrate the theorems obtained and to show that the extended inequality (*) may or may not hold.


Sign in / Sign up

Export Citation Format

Share Document