Convergence behavior of popular schemes in case of calculating on adaptive grids problems with layers

Author(s):  
Владимир Дмитриевич Лисейкин ◽  
Виктор Иванович Паасонен

Проведено сравнение качества решений модельного уравнения второго порядка с малым параметром, полученных по трем различным разностным схемам на специальных адаптивных сетках, явно задаваемых координатным преобразованием, а также на равномерных сетках в новых переменных, соответствующих этому преобразованию. Исследуются схемы второго порядка точности с диагональным преобладанием и без него и простейшая противопотоковая схема. На основе оценок погрешностей сделаны прогнозы относительно свойств решений, подтвержденные анализом и численными экспериментами. Показано, что схема второго порядка аппроксимации с диагональным преобладанием сходится равномерно по малому параметру со вторым порядком лишь в частном случае, когда коэффициент при старшей производной мал только в слое; если же он мал также и вне слоя, порядок сходимости первый. Установлено также, что схема без диагонального преобладания имеет существенно более качественные решения без осцилляций в новых переменных на равномерной сетке, чем в соответствующих им исходных физических координатах. В противоположность ей схемы с диагональным преобладанием не чувствительны к выбору системы координат. The paper compares solution quality to some model second- order equation with a small parameter obtained through three different schemes both on special adaptive grids specified explicitly by coordinate transformations eliminating layers and on uniform grids in a new coordinate related to the transformations. The schemes up to second order in physical and transformation variables both with a diagonal and not diagonal dominance and the simplest counter-flow scheme are analyzed. Predictions of a solution behavior based on estimates of solution errors are described, which are confirmed by numerical experiments and proofs. It is established, in particular, that the scheme of the second order with a diagonal dominance converges uniformly if the coefficient before the second derivative is small at the points of the boundary layer only. It was also demonstrated for the schemes without a diagonal dominance, mach better solutions without oscillations are obtained on uniform grids in new variables than on corresponding adaptive grids in the original physical coordinates.

2019 ◽  
Vol 872 ◽  
pp. 438-471 ◽  
Author(s):  
Xiaoli Li ◽  
Hongxing Rui

In this paper, a finite difference scheme on non-uniform staggered grids is proposed for wormhole propagation with the Darcy–Brinkman–Forchheimer framework in porous media by introducing an auxiliary flux variable to guarantee full mass conservation. Error estimates for the pressure, velocity, porosity, concentration and auxiliary flux with second-order superconvergence in different discrete norms are established rigorously and carefully on non-uniform grids. We also obtain second-order superconvergence for some terms of the $H^{1}$ norm of the velocity on non-uniform grids. Finally, some numerical experiments are presented to verify the theoretical analysis and effectiveness of the proposed scheme.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310 ◽  
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main properties, such as its reproduction of second-degree polynomials, approximation order, and conditions for convexity preservation. In particular, for σ quasi-uniform grids with σ≤4, we get a quasi C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical experiments regarding the approximation order and the convexity preservation.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Saad Althobati ◽  
Jehad Alzabut ◽  
Omar Bazighifan

The oscillation of non-linear neutral equations contributes to many applications, such as torsional oscillations, which have been observed during earthquakes. These oscillations are generally caused by the asymmetry of the structures. The objective of this work is to establish new oscillation criteria for a class of nonlinear even-order differential equations with damping. We employ different approach based on using Riccati technique to reduce the main equation into a second order equation and then comparing with a second order equation whose oscillatory behavior is known. The new conditions complement several results in the literature. Furthermore, examining the validity of the proposed criteria has been demonstrated via particular examples.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Minqiang Xu ◽  
Jing Niu ◽  
Li Guo

This paper is concerned with a high-order numerical scheme for nonlinear systems of second-order boundary value problems (BVPs). First, by utilizing quasi-Newton’s method (QNM), the nonlinear system can be transformed into linear ones. Based on the standard Lobatto orthogonal polynomials, we introduce a high-order Lobatto reproducing kernel method (LRKM) to solve these linear equations. Numerical experiments are performed to investigate the reliability and efficiency of the presented method.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


Sign in / Sign up

Export Citation Format

Share Document