scholarly journals Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription

2012 ◽  
Vol 350 (2) ◽  
pp. 261-275 ◽  
Author(s):  
Hui-Jie Wang ◽  
Jinjiang Fan ◽  
Vassilios Papadopoulos
2003 ◽  
Vol 284 (1) ◽  
pp. E177-E183 ◽  
Author(s):  
Manami Hara ◽  
Xiaoyu Wang ◽  
Toshihiko Kawamura ◽  
Vytas P. Bindokas ◽  
Restituto F. Dizon ◽  
...  

We have generated transgenic mice that express green fluorescent protein (GFP) under the control of the mouse insulin I gene promoter (MIP). The MIP-GFP mice develop normally and are indistinguishable from control animals with respect to glucose tolerance and pancreatic insulin content. Histological studies showed that the MIP-GFP mice had normal islet architecture with coexpression of insulin and GFP in the β-cells of all islets. We observed GFP expression in islets from embryonic day E13.5 through adulthood. Studies of β-cell function revealed no difference in glucose-induced intracellular calcium mobilization between islets from transgenic and control animals. We prepared single-cell suspensions from both isolated islets and whole pancreas from MIP-GFP-transgenic mice and sorted the β-cells by fluorescence-activated cell sorting based on their green fluorescence. These studies showed that 2.4 ± 0.2% ( n = 6) of the cells in the pancreas of newborn (P1) and 0.9 ± 0.1% ( n = 5) of 8-wk-old mice were β-cells. The MIP-GFP-transgenic mouse may be a useful tool for studying β-cell biology in normal and diabetic animals.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


1999 ◽  
Vol 17 (5) ◽  
pp. 557-561 ◽  
Author(s):  
Boris Hedtke ◽  
Martin Meixner ◽  
Sabine Gillandt ◽  
Ekkehard Richter ◽  
Thomas Börner ◽  
...  

2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

2008 ◽  
Vol 88 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Jingbin Yan ◽  
Yanping Xiao ◽  
Shu Wang ◽  
Zhijuan Gong ◽  
Shuzheng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document