Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates

2016 ◽  
Vol 366 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Chizuka Obara ◽  
Ken-ichi Tomiyama ◽  
Kazuya Takizawa ◽  
Rafiqul Islam ◽  
Takeshi Yasuda ◽  
...  
Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 682-691 ◽  
Author(s):  
D Rennick ◽  
G Yang ◽  
L Gemmell ◽  
F Lee

A stromal cell line, GY30, was cloned from mouse bone marrow adherent cell layers. In culture, GY30 cells sustain the production of granulocyte-macrophage progenitor cells (GM-CFU) but fail to support the survival of pluripotential stem cells (CFU-S). GY30 cells secrete two growth factor activities distinct from interleukin-3 (IL-3), IL-2, and macrophage colony-stimulating factor (M-CSF) but functionally similar to GM-CSF and G-CSF. The production of both CSFs is increased 70- to 200-fold by treating GY30 cells with lipopolysaccharide or IL-1. RNA blot analysis reveals the presence of GM-CSF and G-CSF transcripts and demonstrates that IL-1 regulates the production of both factors at the mRNA level. Further, these studies show that the GM-CSF secreted by GY30 cells is structurally similar to the GM-CSF produced by activated T cells.


Stem Cells ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Takeshi Otsuka ◽  
Tomonori Ogo ◽  
Teruaki Nakano ◽  
Hiroaki Niiro ◽  
Seiji Kuga ◽  
...  

FEBS Letters ◽  
2000 ◽  
Vol 481 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Emi Arakawa ◽  
Kazuhide Hasegawa ◽  
Nobuaki Yanai ◽  
Masuo Obinata ◽  
Yuzuru Matsuda

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 430-430 ◽  
Author(s):  
Nicolas Severe ◽  
Murat Karabacak ◽  
Ninib Baryawno ◽  
Karin Gustafsson ◽  
Youmna Sami Kfoury ◽  
...  

Abstract The bone marrow niche is a heterogeneous tissue comprised of multiple cell types that collectively regulate hematopoiesis. It is thought to be a critical stress sensor, integrating information at the level of the organism down to signals at the level of the single cell. In so doing, the niche orchestrates hematopoietic stem and progenitor cell (HSPC) responses to organismal stress. However, most studies of the niche have depended on genetic marker or deletion studies that inherently limit analysis to the selected indicator genes or cells. While this has greatly enhanced our understanding of bone marrow function, it does not permit systems level evaluation of subgroups of cells and their relative response to a particular challenge. We therefore sought a less biased strategy to study bone marrow stromal cells and the cytokines they elaborate under homeostatic and stress conditions. We used Mass-Cytometry (CyTOF) to resolve protein levels at single cell resolution in mouse bone marrow. We established a panel of 36 antibodies: 20 surface and intracellular phenotypic markers, 12 cytokines regulating hematopoiesis, 1 marker of proliferation, 1 marker for DNA damage, 1 viability marker and 1 nucleated cell marker. We intentionally selected antibodies that recognize antigens already defined by others as bone marrow stromal markers. Freshly isolated non-hematopoietic cells from long bones and pelvis were analyzed and clustered into subgroups based on their protein expression signature. We applied k-means clustering using common markers to group bone marrow stromal cells into phenotypical subtypes. At steady state, analysis of over 20.000 mouse bone marrow stromal single-cells negative for the hematopoietic markers CD45 and Ter119 revealed 4 large clusters: an endothelial population expressing CD31, Sca1 and CD105, a mesenchymal stromal cell population expressing Sca1, CD140a, Nestin and LeptinR, a bone marrow stromal progenitor population expressing CD105, CD271 and Runx2 and a mature bone cell population expressing Osteocalcin and CD140a. Within these clusters, sub-populations were evident by adding CD106, CD90, CD73, Embigin, CD29, CD200, c-Kit and CD51. In total, 28 distinct populations of bone marrow stromal cells were identified based on their phenotypic signature. Only one cluster of cells was negative for all the markers we selected. Therefore, the complex heterogeneity of the bone marrow niche cells can be resolved to 28 subpopulations by single-cell protein analysis. Assessing the response of these groups to systemic challenges of medical relevance, we evaluated cells prior to whole body lethal irradiation (9.5Gy), one hour and one day later (the time of transplantation) and 3 days after irradiation (2d post transplantation) with and without transplanted cells. Notably, LeptinR+CD106+Sca1+ cells putatively essential for hematopoiesis and stem cell support were highly sensitive to and largely killed by irradiation. In contrast, endothelial cells and osteoblastic cells were resistant to irradiation. In particular, osteoblastic cells expressing osteocalcin (GFP+), embigin, NGFR and CD73 increased their expression of multiple hematopoietic cytokines including SDF-1, kit ligand, IL-6, G-CSF and TGF-b one day after irradiation. These data indicate that LeptinR+CD106+Sca1 stromal cells are unlikely to participate in HSPC engraftment post-irradiation while a subset of osteoblastic cells are. Unbiased single cell analysis can resolve subsets of bone marrow cells that respond differently to organismal stress. This method enables comprehensively quantifying subpopulation changes with specific challenges to begin defining the systems biology of the bone marrow niche. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (4) ◽  
pp. 927-935 ◽  
Author(s):  
K Jacobsen ◽  
K Miyake ◽  
P W Kincade ◽  
D G Osmond

B lymphocyte precursor cells in mouse bone marrow develop in close association with stromal cells which provide essential growth signals. To identify molecules that may normally play a role in this interaction we have examined the in vivo binding of a new monoclonal antibody (mAb) (KMI6) that recognizes a determinant on a bone marrow stromal cell line (BMS2) in vitro. Flow cytometric and radioautographic evaluations revealed that the antigen recognized by KMI6 is represented on the surface of an extremely small number of cells in bone marrow cell suspensions from adult mice. An apparent molecular mass of 110 kD was obtained by surface labeling of a stromal cell clone and immunoprecipitation. Purified mAb KMI6 labeled with 125I was then given intravenously to young C3H/HeJ mice. Unbound mAb was washed out by cardiac perfusion and femoral bone marrow was examined by light and electron microscope radioautography. KMI6 labeling was heavy on the plasma membrane of many stromal cells, especially those located towards the outer subosteal region. The KMI6-labeled stromal cells were usually associated with cells of lymphoid morphology which they often completely surrounded. The labeling was restricted to areas of stromal cell plasma membranes in contact with lymphoid cells. The lymphoid cells themselves, as well as macrophages and other hemopoietic cells, failed to bind mAb KMI6 significantly. Stromal cells in bone marrow depleted of hemopoietic cells by gamma-irradiation (9,5 Gy) bound mAb KMI6 at reduced intensity. The results demonstrate that the KMI6 determinant, a 110-kD protein, is expressed on bone marrow stromal cells in vivo. Its restriction to areas of interaction with lymphoid cells suggests a role in forming microenvironmental niches of B lymphopoiesis. The surface membrane of individual stromal cells may thus be functionally polarized towards interacting B cell precursors and other hemopoietic cells.


Sign in / Sign up

Export Citation Format

Share Document