Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration

2018 ◽  
Vol 372 (3) ◽  
pp. 549-570 ◽  
Author(s):  
Chiara Sassoli ◽  
Larissa Vallone ◽  
Alessia Tani ◽  
Flaminia Chellini ◽  
Daniele Nosi ◽  
...  
2021 ◽  
Vol 41 ◽  
pp. 269-315
Author(s):  
J Vun ◽  
◽  
M Panteli ◽  
E Jones ◽  
PV Giannoudis

Platelet products (PP) and bone-marrow aspirate are popular sources of osteoinductive signalling molecules and osteogenic bone marrow mesenchymal stromal cells (BM-MSCs) used in the treatment of impaired bone healing. However, the combined use of PP and BM-MSCs in clinical studies has reported mixed results. Understanding the cellular and molecular interactions between PP and BM-MSCs plays the important role of guiding future research and clinical application. This systematic review investigates the effects of PP on the biophysiological functions of BM-MSCs in in vitro human studies, including (i) proliferation, (ii) migration, (iii) differentiation, (iv) growth factor/cytokine/protein expression, (v) immunomodulation, (vi) chemotactic effect on haematopoietic stem cells, (vii) response to apoptotic stress, and (viii) gene expression. In vitro studies in human have demonstrated the multi-faceted ‘priming effect’ of PP on the biophysiological functions of BM-MSCs. PP has been shown to improve proliferation, migration, osteogenic differentiation, reaction to apoptotic stress as well as immunomodulatory, pro-angiogenic and pro-inflammatory capacities of BM-MSCs. Several factors are highlighted that restrict the transferability of these findings into clinical practice. Therefore, more collaborative in vitro research in humans modelled to reflect clinical practice is required to better understand the effects of PP exposure on the biophysiological function(s) of BM-MSCs in human.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1919-1919
Author(s):  
Caridad Martinez ◽  
Ted J. Hofmann ◽  
Roberta Marino ◽  
Massimo Dominici ◽  
Edwin M. Horwitz

Abstract Human mesenchymal stromal cells (MSCs) are spindle-shape, plastic-adherent cells with capacity to differentiate to bone, cartilage, and fat. MSCs express fibroblast, endothelial, and lymphocyte antigens, e.g. CD105, CD73, CD90, and CD166 which are the cornerstone of phenotypic characterization of these cells. We recently showed that MSCs are the only bone marrow cell to express GD2, a neural ganglioside. Now, for the first time we show that GD2 may serve as the single, unique, and definitive marker of marrow and adipose derived MSCs that can be used to isolate GD2+ MSCs, which possess important biologic properties justifying prospective isolation. MSCs expression of GD2 is uniformly high on freshly isolated and culture-expanded cells. Using the Miltenyi AutoMACS® device and a monoclonal antibody recognizing GD2 (clone 14.G2A) we prospectively isolated a highly enriched MSC population from bone marrow MNCs. The selected fraction was >98% pure for GD2+ cells determined by flow cytometry. Light microscopy showed that the GD2-selected cells were smaller, thinner, and more spindle-like when attached to plastic compared to unselected MSCs which spread wider along the surface of the culture flask, the so-called “fried egg” appearance. The doubling time of GD2-selected MSCs was 30 hrs compared to 90 hrs for unselected cells representing a 3-fold greater growth rate. Cell cycle analysis by flow cytometry showed ∼80% of cells were in G0/G1 and ∼20% were in S/G2/M phases of the cell cycle in both populations. With the shorter doubling time, this data indicates that GD2-selected MSCs move through the cell cycle more rapidly than unselected cells. In accordance with this finding, electron microscopy showed few organelles in the GD2-selected cells, but increase lamellar bodies indicating overall less complexity, but consistent with a greater membrane turnover rate (cell division) than unselected MSCs. Moreover, flow cytometric analysis revealed an increased expression of receptors for bFGF and EFG, known mitogenic factor receptors for MSCs, compared to unselected MSCs. In vitro differentiation of GD2-selected MSCs showed a more robust osteoid matrix formation (osteoblast) and proteoglycan formation (chondroblast) assayed by semi-quantitative Alizarin Red and Alcian blue staining, respectively. Additionally, more GD2-selected MSCs differentiated to adipocytes than among unselected cells. Surprisingly, GD2 expression persisted on the in vitro human MSC-differentiated osteoblasts, chondroblasts, and adipocytes, in contrast to human bone-derived osteoblasts, adipose tissue, and cartilage which lacked GD2 expression. We conclude that GD2 is a unique, stably expressed surface MSC marker which can be used to prospectively isolate MSCs from marrow, GD2-selcted cells have a more robust in vitro proliferation and differentiation potential which may be valuable for cell therapy, and biologically, in vitro isolated MSCs may not represent the in vivo progenitor for bone, fat, or cartilage.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Sony Pandey ◽  
Dawn U. Hickey ◽  
Marti Drum ◽  
Darryl L. Millis ◽  
Maria Cekanova

Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1566-1566
Author(s):  
Fabien Guilloton ◽  
Gersende Caron ◽  
Cédric Ménard ◽  
Céline Pangault ◽  
Patricia Amé-Thomas ◽  
...  

Abstract Abstract 1566 Accumulating evidence indicates that infiltrating stromal cells contribute directly and indirectly to tumor growth in a wide range of solid cancers and hematological malignancies. In follicular lymphoma (FL), malignant B cells are found admixed with heterogeneous lymphoid-like stromal cells within invaded lymph nodes and bone marrow (BM). In addition, in vitro functional studies have underlined that mesenchymal cells recruit malignant FL B cells and protect them from spontaneous and drug-induced apoptosis. In particular, we have previously demonstrated that mesenchymal stromal cells (MSC) efficiently support in vitro FL B-cell survival, especially after their engagement towards lymphoid differentiation through treatment with TNF-α and Lymphotoxin-α1β2 (TNF/LT) or after coculture with malignant B cells. However, the mechanisms of this supportive activity remain largely unknown. In this study, we used Affymetrix U133 Plus 2.0 microarrays, to compare the gene expression profile (GEP) of bone marrow-derived MSC (BM-MSC) obtained from 10 FL patients at diagnosis versus 6 age-matched healthy donors (HD). In these conditions, neither the CFU-F concentration in the BM nor the cumulative population doubling of BM-MSC significantly differed between HD and FL patients. Unsupervised analysis was able to perfectly segregate FL-MSC from HD-MSC and we identified, using supervised analyzes, a list of 408 probesets defining FL-MSC signature, including 320 nonredundant genes upregulated in FL-MSC compared to HD-MSC. We then defined the GEP of human lymphoid-like stroma using HD-MSC treated in vitro by TNF/LT and demonstrated, by a Gene Set Enrichment Analysis (GSEA) approach, that the FL-MSC signature is significantly enriched for genes associated with a lymphoid-like commitment. Interestingly, CCL2 was strongly overexpressed by FL-MSC, was upregulated in HD-MSC by coculture with malignant B cells, and was detected at a higher level in FL BM plasma compared to normal BM plasma (504.4 pg/mL [23.8-4413] versus 33.9 pg/mL [5-126.1]; P <.01). In agreement, FL-MSC triggered a more potent CCL2-dependent monocyte migration than HD-MSC. Moreover, FL-MSC and macrophages cooperated to sustain malignant B-cell growth through both protection from apoptosis and enhancement of cell proliferation. Finally, FL-MSC promoted monocyte differentiation towards a proangiogenic LPS-unresponsive phenotype close to that of tumor-associated macrophages. We unraveled a key role for the Notch pathway in this process and identified an overexpression of JAGGED1 in FL-MSC compared to HD-MSC. Altogether, these results highlight the complex role of FL stromal cells that promote direct tumor B-cell growth and orchestrate FL cell niche. The identification and characterization of this intricate network of cell interactions may provide novel therapeutic targets in this disease. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document