Chronic N enrichment and drought alter plant cover and community composition in a Mediterranean-type semi-arid shrubland

Oecologia ◽  
2017 ◽  
Vol 184 (1) ◽  
pp. 267-277 ◽  
Author(s):  
George L. Vourlitis
Author(s):  
R.Merton Love

Between the deserts and the forests are vast expanses of basins, plateaux, and grasslands with a plant cover of grasses, broadleaved herbs, shrubs, and open, arid woodlands. The semi-arid grassland, the open woods, and the desert shrubland constitute the domain of the huge western livestock industry in the 17 states lying roughly west of the 100th meridian. These are known as the range states and they are likely to remain predominantly range states because of the low precipitation, rough topography, and shallow, rocky and saline soils.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
A.-K. Bergström ◽  
A. Deininger ◽  
A. Jonsson ◽  
J. Karlsson ◽  
T. Vrede

AbstractWe used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. A. Louw ◽  
N. S. Haussmann ◽  
P. C. le Roux

AbstractThe impacts of ecosystem engineers may be expected to vary along environmental gradients. Due to some resources being more limited in arid than in mesic environments, disturbances created by burrowing mammals are expected to have a greater ameliorating effect in arid environments, with larger differences in microhabitat conditions expected between burrows and undisturbed areas. The aim of this study was to test if the impacts of a medium-sized burrowing mammal, the aardvark, on soil properties (soil temperature, moisture and compaction) and vegetation characteristics (plant cover, species richness and species composition) are consistent across three biomes that differ strongly in annual rainfall. Burrowing affected soil and vegetation attributes, but the direction and magnitude of these biogeomorphological impacts were not consistent across the different biomes. For example, plant species composition was altered by burrowing in the arid scrubland and in the mesic grassland, but not in the semi-arid savannah. Contrary to expectations, the difference in the impacts of burrowing between biomes were not related to rainfall, with burrowing having strong, albeit different, impacts in both the arid scrubland and the mesic grassland, but weaker effects in the semi-arid savannah. It appears, therefore, that the impacts of these biogeomorphic agents may be site-specific and that it may be difficult to predict variation in their biotic and abiotic effects across environmental gradients. As a result, forecasting the impacts of ecosystem engineers under different conditions remains a challenge to management, restoration and conservation strategies related to these types of species.


2009 ◽  
Vol 320 (1-2) ◽  
pp. 321-332 ◽  
Author(s):  
Anthony Mills ◽  
Martin Fey ◽  
John Donaldson ◽  
Simon Todd ◽  
Leon Theron

Sign in / Sign up

Export Citation Format

Share Document