scholarly journals Heatwave frequency and seedling death alter stress-specific emissions of volatile organic compounds in Aleppo pine

Oecologia ◽  
2021 ◽  
Author(s):  
Benjamin Birami ◽  
Ines Bamberger ◽  
Andrea Ghirardo ◽  
Rüdiger Grote ◽  
Almut Arneth ◽  
...  

AbstractBiogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Philip D. Nightingale ◽  
...  

Abstract. We present a technique that utilises a segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer to measure a broad range of dissolved volatile organic compounds. Thanks to its relatively large surface area for gas exchange, small internal volume, and smooth headspace–water separation, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both continuous and discrete measurements of volatile organic compounds in seawater due to its low sample water flow (100 cm3 min−1) and the ease of changing sample intake. The equilibrator setup is both relatively inexpensive and compact. Hence, it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. The internal area of the equilibrator is smooth and unreactive. Thus, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator described here fully equilibrates for gases that are similarly soluble or more soluble than toluene and can easily be modified to fully equilibrate for even less soluble gases. The method has been successfully deployed in the Canadian Arctic. Some example data from underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


2019 ◽  
Vol 9 (14) ◽  
pp. 8201-8213 ◽  
Author(s):  
Mathieu Santonja ◽  
Anne Bousquet‐Mélou ◽  
Stéphane Greff ◽  
Elena Ormeño ◽  
Catherine Fernandez

2016 ◽  
Vol 9 (3) ◽  
pp. 1247-1259 ◽  
Author(s):  
T. Hohaus ◽  
U. Kuhn ◽  
S. Andres ◽  
M. Kaminski ◽  
F. Rohrer ◽  
...  

Abstract. A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m−2 s−1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pui Yi Yung ◽  
Letizia Lo Grasso ◽  
Abeed Fatima Mohidin ◽  
Enzo Acerbi ◽  
Jamie Hinks ◽  
...  

Abstract Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs.


2015 ◽  
Vol 8 (11) ◽  
pp. 11779-11816
Author(s):  
T. Hohaus ◽  
U. Kuhn ◽  
S. Andres ◽  
M. Kaminski ◽  
F. Rohrer ◽  
...  

Abstract. A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m−2 s−1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.


2014 ◽  
Vol 14 (13) ◽  
pp. 6495-6510 ◽  
Author(s):  
E. Bourtsoukidis ◽  
J. Williams ◽  
J. Kesselmeier ◽  
S. Jacobi ◽  
B. Bonn

Abstract. Biogenic volatile organic compounds (BVOCs) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and proton-transfer-reaction mass spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids dominate the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon-containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes, which were emitted most strongly in April. Finally, we evaluate the temperature-dependent algorithm that seems to describe the temperature-dependent emissions of methanol, acetaldehyde and monoterpenes but only with the use of the monthly derived values for emission potential, Es, and temperature dependency, β factor.


2012 ◽  
Vol 84 ◽  
pp. 33-43 ◽  
Author(s):  
Kaisa Hartikainen ◽  
Johanna Riikonen ◽  
Anne-Marja Nerg ◽  
Minna Kivimäenpää ◽  
Viivi Ahonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document