Volatile fatty acids production from food wastes and its application to biological nutrient removal

2000 ◽  
Vol 22 (6) ◽  
pp. 543-545 ◽  
Author(s):  
S.-J. Lim ◽  
D. W. Choi ◽  
W. G. Lee ◽  
S. Kwon ◽  
H. N. Chang
2001 ◽  
Vol 44 (2-3) ◽  
pp. 57-62 ◽  
Author(s):  
V. Urbain ◽  
P. Wright ◽  
M. Thomas

Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a pre-fermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.


2004 ◽  
Vol 50 (6) ◽  
pp. 69-70 ◽  
Author(s):  
A. Seco ◽  
J. Ribes ◽  
J. Serralta ◽  
J. Ferrer

This paper presents the results of the work carried out by the CALAGUA Group on Mathematical Modelling of Biological Treatment Processes: the Biological Nutrient Removal Model No.1. This model is based on a new concept for dynamic simulation of wastewater treatment plants: a unique model can be used to design, simulate and optimize the whole plant, as it includes most of the biological and physico-chemical processes taking place in all treatment operations. The physical processes included are: settling and clarification processes (flocculated settling, hindered settling and thickening), volatile fatty acids elutriation and gasÐliquid transfer. The chemical interactions included comprise acidÐbase processes, where equilibrium conditions are assumed. The biological processes included are: organic matter, nitrogen and phosphorus removal; acidogenesis, acetogenesis and methanogenesis. Environmental conditions in each operation unit (aerobic, anoxic or anaerobic) will determine which bacterial groups can grow. Thus, only the model parameters related to bacterial groups able to grow in any of the operation units of a specific WWTP will require calibration. One of the most important advantages of this model is that no additional analysis with respect to ASM2d is required for wastewater characterization. Some applications of this model have also been briefly explained in this paper.


Bioengineered ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Lukitawesa ◽  
Regina J. Patinvoh ◽  
Ria Millati ◽  
Ilona Sárvári-Horváth ◽  
Mohammad J. Taherzadeh

2010 ◽  
Vol 33 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Jin-dal-rae Choi ◽  
Ho Nam Chang ◽  
Jong-In Han

2013 ◽  
Vol 68 (9) ◽  
pp. 2061-2066 ◽  
Author(s):  
Xiang Li ◽  
Hui Mu ◽  
Yinguang Chen ◽  
Xiong Zheng ◽  
Jingyang Luo ◽  
...  

Volatile fatty acids (VFA), derived from sludge fermentation, have been used as one effective carbon source for biological nutrient removal, especially favorable with VFA containing with high levels of propionic acid. In this paper, a new fermentation method was employed to significantly produce the propionic acid-enriched VFA from the co-fermentation liquid of sewage sludge and food waste: including (1) mixing food waste with sludge in the anaerobic digester (the first stage) and (2) separating the mixture, sterilizing the first stage liquid and fermenting it after inoculation with Propionibacterium acidipropionici (the second stage). The effect of the key parameters including pH, the mixing ratio of the food waste and sludge, fermentation time and temperature of the first stage on the propionic acid-enriched VFA production (the second stage) was individually discussed. By the molecular weight distribution analysis, the comparison of the solubilisation and hydrolysis process in difference parameters was fully elaborated. The optimal combination of the parameters was then obtained. Finally, the propionic acid-enriched VFA fermentation was successfully conducted in a semi-continuous reactor using the first stage liquid from the optimal condition.


2021 ◽  
Author(s):  
Muhammed Ali Abdullah Khan

Waste-derived volatile fatty acids (VFAs) is an important carbon substrate for microorganisms engaged in the production of bioenergy, biodegradable plastics, and biological nutrient removal process. In this project, the generation and applications of waste-derived VFA were examined. Three solid wastes were used Primary sludge (PS), thickened waste activated sludge (TWAS) which were collected from Ashbridges Bay and source separated organics (SSO) that was collected from Disco Road facility. All the water quality analyses such as pH, TCOD, SCOD, TVFA, TSS, VSS, NH3 and, alkalinity were monitored. The results of this study showed that with increasing the Hydraulic retention time (HRT), the percentage of acidification increased. Furthermore, the results showed that alkaline pH was better than the acid pHs. Keywords: Total Volatile Fatty Acids, Soluble Chemical Oxygen Demand, Primary Sludge, Thickened Waste Activated Sludge, Source Separated Organics.


2021 ◽  
Author(s):  
Muhammed Ali Abdullah Khan

Waste-derived volatile fatty acids (VFAs) is an important carbon substrate for microorganisms engaged in the production of bioenergy, biodegradable plastics, and biological nutrient removal process. In this project, the generation and applications of waste-derived VFA were examined. Three solid wastes were used Primary sludge (PS), thickened waste activated sludge (TWAS) which were collected from Ashbridges Bay and source separated organics (SSO) that was collected from Disco Road facility. All the water quality analyses such as pH, TCOD, SCOD, TVFA, TSS, VSS, NH3 and, alkalinity were monitored. The results of this study showed that with increasing the Hydraulic retention time (HRT), the percentage of acidification increased. Furthermore, the results showed that alkaline pH was better than the acid pHs. Keywords: Total Volatile Fatty Acids, Soluble Chemical Oxygen Demand, Primary Sludge, Thickened Waste Activated Sludge, Source Separated Organics.


1999 ◽  
Vol 39 (6) ◽  
pp. 113-118 ◽  
Author(s):  
Gerald M. Stevens ◽  
James L. Barnard ◽  
Barry Rabinowitz

During the initial years of the development of Biological Nutrient Removal (BNR) technology, it was assumed that the bacterial species responsible of the removal of phosphorus (BioP organisms) could not use nitrates as a final electron acceptor and could thus not denitrify. The carbon taken up in the form of Volatile Fatty Acids (VFA) in the anaerobic zone was thus deemed to be unavailable for denitrification in the anoxic zone. This was reinforced through experiments in which BioP organisms cultured in the high-rate Phoredox system in which no nitrification took place, did not denitrify when nitrates were added. Many researchers (e.g. Dold and Barker) have since shown that in BNR systems such as the 3-Stage Bardempho system, where nitrates are recycled to the anoxic zone which follows the anaerobic zone, a high degree of phosphorus uptake through denitrification does occur. In addition, the partial diversion of primary effluent directly to the anoxic zone has significantly improved phosphorus uptake under anoxic conditions. Full-scale operations at the Westbank, British Columbia, plant showed a substantial uptake of phosphorus in the anoxic zone in the absence of oxygen. The Westbank configuration includes side stream primary sludge fermentation, VFA rich fermenter supernatant addition directly to the anaerobic zone and diversion of a portion of primary effluent to the anoxic zone. This configuration stimulates P-uptake under anoxic conditions, demonstrates the efficient use of carbon and is instrumental in achieving an annual average effluent Total-P concentration of less than 0.17 mg/l. The phenomenon of denitrification by BioP organisms was included in the Biowin Model developed by Dold (Biowin Manual). This paper describes experiments and full-scale plant observations to establish the role of BioP organisms in the removal of nitrates in the anoxic zone of a plant which also receives a portion of the primary effluent and verification of the Biowin model.


Sign in / Sign up

Export Citation Format

Share Document