scholarly journals Optimizing a Generalized Gini Index in Stable Marriage Problems: NP-Hardness, Approximation and a Polynomial Time Special Case

Algorithmica ◽  
2019 ◽  
Vol 81 (7) ◽  
pp. 2653-2681
Author(s):  
Hugo Gilbert ◽  
Olivier Spanjaard
2020 ◽  
Vol 34 (06) ◽  
pp. 10110-10117
Author(s):  
Andrew Estornell ◽  
Sanmay Das ◽  
Yevgeniy Vorobeychik

Deception is a fundamental issue across a diverse array of settings, from cybersecurity, where decoys (e.g., honeypots) are an important tool, to politics that can feature politically motivated “leaks” and fake news about candidates. Typical considerations of deception view it as providing false information. However, just as important but less frequently studied is a more tacit form where information is strategically hidden or leaked. We consider the problem of how much an adversary can affect a principal's decision by “half-truths”, that is, by masking or hiding bits of information, when the principal is oblivious to the presence of the adversary. The principal's problem can be modeled as one of predicting future states of variables in a dynamic Bayes network, and we show that, while theoretically the principal's decisions can be made arbitrarily bad, the optimal attack is NP-hard to approximate, even under strong assumptions favoring the attacker. However, we also describe an important special case where the dependency of future states on past states is additive, in which we can efficiently compute an approximately optimal attack. Moreover, in networks with a linear transition function we can solve the problem optimally in polynomial time.


Algorithmica ◽  
2020 ◽  
Author(s):  
Stefano Leonardi ◽  
Gianpiero Monaco ◽  
Piotr Sankowski ◽  
Qiang Zhang

AbstractMotivated by many practical applications, in this paper we study budget feasible mechanisms with the goal of procuring an independent set of a matroid. More specifically, we are given a matroid $${\mathcal {M}}=(E,{\mathcal {I}})$$ M = ( E , I ) . Each element of the ground set E is controlled by a selfish agent and the cost of the element is private information of the agent itself. A budget limited buyer has additive valuations over the elements of E. The goal is to design an incentive compatible budget feasible mechanism which procures an independent set of the matroid of largest possible value. We also consider the more general case of the pair $${\mathcal {M}}=(E,{\mathcal {I}})$$ M = ( E , I ) satisfying only the hereditary property. This includes matroids as well as matroid intersection. We show that, given a polynomial time deterministic algorithm that returns an $$\alpha $$ α -approximation to the problem of finding a maximum-value independent set in $${\mathcal {M}}$$ M , there exists an individually rational, truthful and budget feasible mechanism which is $$(3\alpha +1)$$ ( 3 α + 1 ) -approximated and runs in polynomial time, thus yielding also a 4-approximation for the special case of matroids.


Author(s):  
JACEK B£A ZÿEWICZ ◽  
Mikhail Kovalyov ◽  
Jędrzej Musiał ◽  
Andrzej Urbanski ◽  
Adam Wojciechowski

Internet shopping optimization problemA high number of Internet shops makes it difficult for a customer to review manually all the available offers and select optimal outlets for shopping. A partial solution to the problem is brought by price comparators which produce price rankings from collected offers. However, their possibilities are limited to a comparison of offers for a single product requested by the customer. The issue we investigate in this paper is a multiple-item multiple-shop optimization problem, in which total expenses of a customer to buy a given set of items should be minimized over all available offers. In this paper, the Internet Shopping Optimization Problem (ISOP) is defined in a formal way and a proof of its strong NP-hardness is provided. We also describe polynomial time algorithms for special cases of the problem.


Author(s):  
Enrico Pilotto ◽  
Francesca Rossi ◽  
Kristen Brent Venable ◽  
Toby Walsh

10.37236/3388 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Katharina T. Huber ◽  
Mike Steel

It is a classical result that any finite tree with positively weighted edges, and without vertices of degree 2, is uniquely determined by the weighted path distance between each pair of leaves. Moreover, it is possible for a (small) strict subset $\mathcal{L}$ of leaf pairs to suffice for reconstructing the tree and its edge weights, given just the distances between the leaf pairs in $\mathcal{L}$. It is known that any set ${\mathcal L}$ with this property for a tree in which all interior vertices have degree 3 must form a cover  for $T$ - that is, for each interior vertex $v$ of $T$, ${\mathcal L}$ must contain a pair of leaves from each pair of the three components of  $T-v$.  Here we provide a partial converse of this result by showing that if a set ${\mathcal L}$ of leaf pairs forms a cover  of a certain type for such a tree $T$ then $T$ and its edge weights can be uniquely determined from the distances between the pairs of leaves in ${\mathcal L}$. Moreover,  there is a polynomial-time algorithm for achieving this reconstruction. The result establishes a special case of a recent question concerning 'triplet covers', and is relevant to a problem arising in evolutionary genomics.


2021 ◽  
Vol 71 ◽  
pp. 993-1048
Author(s):  
Niclas Boehmer ◽  
Robert Bredereck ◽  
Klaus Heeger ◽  
Rolf Niedermeier

We initiate the study of external manipulations in Stable Marriage by considering  several manipulative actions as well as several manipulation goals. For instance, one goal  is to make sure that a given pair of agents is matched in a stable solution, and this may be  achieved by the manipulative action of reordering some agents' preference lists. We present  a comprehensive study of the computational complexity of all problems arising in this way.  We find several polynomial-time solvable cases as well as NP-hard ones. For the NP-hard  cases, focusing on the natural parameter "budget" (that is, the number of manipulative  actions one is allowed to perform), we also conduct a parameterized complexity analysis  and encounter mostly parameterized hardness results. 


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 819 ◽  
Author(s):  
Hongjun Wei ◽  
Jinjiang Yuan ◽  
Yuan Gao

We consider the coordination of transportation and batching scheduling with one single vehicle for minimizing total weighted completion time. The computational complexity of the problem with batch capacity of at least 2 was posed as open in the literature. For this problem, we show the unary NP-hardness for every batch capacity at least 3 and present a polynomial-time 3-approximation algorithm when the batch capacity is at least 2.


2002 ◽  
Vol 13 (04) ◽  
pp. 613-627 ◽  
Author(s):  
RENAUD LEPÈRE ◽  
DENIS TRYSTRAM ◽  
GERHARD J. WOEGINGER

This work presents approximation algorithms for scheduling the tasks of a parallel application that are subject to precedence constraints. The considered tasks are malleable which means that they may be executed on a varying number of processors in parallel. The considered objective criterion is the makespan, i.e., the largest task completion time. We demonstrate a close relationship between this scheduling problem and one of its subproblems, the allotment problem. By exploiting this relationship, we design a polynomial time approximation algorithm with performance guarantee arbitrarily close to [Formula: see text] for the special case of series parallel precedence constraints and for the special case of precedence constraints of bounded width. These special cases cover the important situation of tree structured precedence constraints. For arbitrary precedence constraints, we give a polynomial time approximation algorithm with performance guarantee [Formula: see text].


1994 ◽  
Vol 03 (03) ◽  
pp. 395-405
Author(s):  
J. HARALAMBIDES ◽  
S. TRAGOUDAS

The problem of partitioning the elements of a graph G=(V, E) into two equal size sets A and B that share at most d elements such that the total number of edges (u, v), u∈A−B, v∈B−A is minimized, arises in the areas of Hypermedia Organization, Network Integrity, and VLSI Layout. We formulate the problem in terms of element duplication, where each element c∈A∩B is substituted by two copies c′∈A and c″∈B As a result, edges incident to c′ or c″ need not count in the cost of the partition. We show that this partitioning problem is NP-hard in general, and we present a solution which utilizes an optimal polynomial time algorithm for the special case where G is a series-parallel graph. We also discuss special other cases where the partitioning problem or variations are polynomially solvable.


Sign in / Sign up

Export Citation Format

Share Document