scholarly journals Microwatt power management: challenges of on-chip energy harvesting

Author(s):  
Stefan Schmickl ◽  
Thomas Faseth ◽  
Harald Pretl

AbstractIoT devices become more and more popular which implies a growing interest in easily maintainable and battery-independent power sources, as wires and batteries are unpractical in application scenarios where billions of devices get deployed. To keep the costs low and to achieve the smallest possible form factor, SoC implementations with integrated energy harvesting and power management units are a welcome innovation.On-chip energy harvesting solutions are typically only capable of supplying power in the order of microwatts. A significant design challenge exists for the functional blocks of the IoT-SoC as well as for the power management unit itself as the harvested voltage has to be converted to a higher and more usable voltage. Simultaneously, the power management blocks have to be as efficient as possible with the lowest possible quiescent currents.In this paper, we provide a look at on-chip microwatt power management. Starting with the energy-harvesting from RF power or light, we then show state-of-the-art implementations of ultra-low power voltage references and ultra-low power low-dropout regulator (LDO) designs.

Sensors ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 5531-5554 ◽  
Author(s):  
Ismail Cevik ◽  
Xiwei Huang ◽  
Hao Yu ◽  
Mei Yan ◽  
Suat Ay

2018 ◽  
Vol 7 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Pierre Bellier ◽  
Philippe Laurent ◽  
Serguei Stoukatch ◽  
François Dupont ◽  
Laura Joris ◽  
...  

Abstract. In this work, we developed and characterised an autonomous micro-platform including several types of sensors, an advanced power management unit (PMU) and radio frequency (RF) transmission capabilities. Autonomy requires integration of an energy harvester, an energy storage device, a PMU, ultra-low-power components (including sensors) and optimized software. Our choice was to use commercial off-the-shelf components with low-power consumption, low cost and compactness as selection criteria. For the multi-purpose micro-platform, we choose to include the most common sensors (such as temperature, humidity, luminosity, acceleration, etc.) and to integrate them in one miniaturised autonomous device. A processing unit is embedded in the system. It allows for data acquisition from each sensor individually, simple data processing, and storing and/or wireless data transmission. Such a system can be used as stand-alone, with an internal storage in a non-volatile memory, or as a node in a wireless network, with bi-directional communication with a hub device where data can be analysed further. According to specific application requirements, system settings can be adjusted, such as the sampling rate, the resolution and the processing of the sensor data. Parallel to full autonomous functionality, the low-power design enables us to power the system by a small battery leading to a high degree of autonomy at a high sampling rate. Therefore, we also developed an alternative battery-powered version of the micro-platform that increases the range of applications. As such, the system is highly versatile and due to its reduced dimensions, it can be used nearly everywhere. Typical applications include the Internet of Things, Industry 4.0, home automation and building structural health monitoring.


Author(s):  
Gregor Kowalczyk ◽  
Markus Dielacher ◽  
Martin Flatscher ◽  
Josef Prainsack ◽  
Hartwig Unterassinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document