Brain age prediction using improved twin SVR

Author(s):  
M. A. Ganaie ◽  
M. Tanveer ◽  
Iman Beheshti
Keyword(s):  
2021 ◽  
Vol 310 ◽  
pp. 111270
Author(s):  
Won Hee Lee ◽  
Mathilde Antoniades ◽  
Hugo G Schnack ◽  
Rene S. Kahn ◽  
Sophia Frangou

2021 ◽  
Author(s):  
Lea Baecker ◽  
Jessica Dafflon ◽  
Pedro F. Costa ◽  
Rafael Garcia‐Dias ◽  
Sandra Vieira ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Yi-Bin Xi ◽  
Xu-Sha Wu ◽  
Long-Biao Cui ◽  
Li-Jun Bai ◽  
Shuo-Qiu Gan ◽  
...  

Background Neuroimaging- and machine-learning-based brain-age prediction of schizophrenia is well established. However, the diagnostic significance and the effect of early medication on first-episode schizophrenia remains unclear. Aims To explore whether predicted brain age can be used as a biomarker for schizophrenia diagnosis, and the relationship between clinical characteristics and brain-predicted age difference (PAD), and the effects of early medication on predicted brain age. Method The predicted model was built on 523 diffusion tensor imaging magnetic resonance imaging scans from healthy controls. First, the brain-PAD of 60 patients with first-episode schizophrenia, 60 healthy controls and 21 follow-up patients from the principal data-set and 40 pairs of individuals in the replication data-set were calculated. Next, the brain-PAD between groups were compared and the correlations between brain-PAD and clinical measurements were analysed. Results The patients showed a significant increase in brain-PAD compared with healthy controls. After early medication, the brain-PAD of patients decreased significantly compared with baseline (P < 0.001). The fractional anisotropy value of 31/33 white matter tract features, which related to the brain-PAD scores, had significantly statistical differences before and after measurements (P < 0.05, false discovery rate corrected). Correlation analysis showed that the age gap was negatively associated with the positive score on the Positive and Negative Syndrome Scale in the principal data-set (r = −0.326, P = 0.014). Conclusions The brain age of patients with first-episode schizophrenia may be older than their chronological age. Early medication holds promise for improving the patient's brain ageing. Neuroimaging-based brain-age prediction can provide novel insights into the understanding of schizophrenia.


2020 ◽  
Author(s):  
Xin Niu ◽  
Alexei Taylor ◽  
Russell T. Shinohara ◽  
John Kounios ◽  
Fengqing Zhang

AbstractBrain regions change in different ways and at different rates. This staggered developmental unfolding is determined by genetics and postnatal experience and is implicated in the progression of psychiatric and neurological disorders. Neuroimaging-based brain-age prediction has emerged as an important new approach for studying brain development. However, the unidimensional brain-age estimates provided by previous methods do not capture the divergent developmental trajectories of various brain structures. Here we propose and illustrate an analytic pipeline to compute an index of multidimensional brain-age that provides regional age predictions. First, using a database of 556 subjects that includes psychiatric and neurological patients as well as healthy controls we conducted robust regression to characterize the developmental trajectory of each MRI-based brain-imaging feature. We then utilized cluster analysis to identify subgroups of imaging features with a similar developmental trajectory. For each identified cluster, we obtained a brain-age prediction by applying machine-learning models with imaging features belonging to each cluster. Brain-age predictions from multiple clusters form a multidimensional brain-age index (MBAI). The MBAI is more sensitive to alterations in brain structures and captured distinct regional change patterns. In particular, the MBAI provided a more flexible analysis of brain age across brain regions that revealed changes in specific structures in psychiatric disorders that would otherwise have been combined in a unidimensional brain age prediction. More generally, brain-age prediction using a subset of homogeneous features circumvents the curse of dimensionality in neuroimaging data.


2019 ◽  
Author(s):  
Geneviève Richard ◽  
Knut Kolskår ◽  
Kristine M. Ulrichsen ◽  
Tobias Kaufmann ◽  
Dag Alnæs ◽  
...  

AbstractCognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase.Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age – chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.


NeuroImage ◽  
2020 ◽  
Vol 222 ◽  
pp. 117292 ◽  
Author(s):  
Ann-Marie G. de Lange ◽  
Melis Anatürk ◽  
Sana Suri ◽  
Tobias Kaufmann ◽  
James H. Cole ◽  
...  

2020 ◽  
Vol 24 (2) ◽  
pp. 336-344
Author(s):  
Peyman Hosseinzadeh Kassani ◽  
Alexej Gossmann ◽  
Yu-Ping Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document