scholarly journals Automatic and intelligent content visualization system based on deep learning and genetic algorithm

Author(s):  
Murat İnce
2021 ◽  
Vol 39 (4) ◽  
pp. 1190-1197
Author(s):  
Y. Ibrahim ◽  
E. Okafor ◽  
B. Yahaya

Manual grid-search tuning of machine learning hyperparameters is very time-consuming. Hence, to curb this problem, we propose the use of a genetic algorithm (GA) for the selection of optimal radial-basis-function based support vector machine (RBF-SVM) hyperparameters; regularization parameter C and cost-factor γ. The resulting optimal parameters were used during the training of face recognition models. To train the models, we independently extracted features from the ORL face image dataset using local binary patterns (handcrafted) and deep learning architectures (pretrained variants of VGGNet). The resulting features were passed as input to either linear-SVM or optimized RBF-SVM. The results show that the models from optimized RBFSVM combined with deep learning or hand-crafted features yielded performances that surpass models obtained from Linear-SVM combined with the aforementioned features in most of the data splits. The study demonstrated that it is profitable to optimize the hyperparameters of an SVM to obtain the best classification performance. Keywords: Face Recognition, Feature Extraction, Local Binary Patterns, Transfer Learning, Genetic Algorithm and Support Vector  Machines.


2021 ◽  
Vol 23 (09) ◽  
pp. 981-993
Author(s):  
T. Balamurugan ◽  
◽  
E. Gnanamanoharan ◽  

Brain tumor segmentation is a challenging task in the medical diagnosis. The primary aim of brain tumor segmentation is to produce precise characterizations of brain tumor areas using adequately placed masks. Deep learning techniques have shown great promise in recent years for solving various computer vision problems such as object detection, image classification, and semantic segmentation. Numerous deep learning-based approaches have been implemented to achieve excellent system performance in brain tumor segmentation. This article aims to comprehensively study the recently developed brain tumor segmentation technology based on deep learning in light of the most advanced technology and its performance. A genetic algorithm based on fuzzy C-means (FCM-GA) was used in this study to segment tumor regions from brain images. The input image is scaled to 256×256 during the preprocessing stage. FCM-GA segmented a preprocessed MRI image. This is a versatile advanced machine learning (ML) technique for locating objects in large datasets. The segmented image is then subjected to hybrid feature extraction (HFE) to improve the feature subset. To obtain the best feature value, Kernel Nearest Neighbor with a genetic algorithm (KNN-GA) is used in the feature selection process. The best feature value is fed into the RESNET classifier, which divides the MRI image into meningioma, glioma, and pituitary gland regions. Real-time data sets are used to validate the performance of the proposed hybrid method. The proposed method improves average classification accuracy by 7.99 % to existing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) classification algorithms


2019 ◽  
Vol 26 (13-14) ◽  
pp. 1187-1198 ◽  
Author(s):  
Li-Xin Guo ◽  
Dinh-Nam Dao

This article presents a new control method based on fuzzy controller, time delay estimation, deep learning, and non-dominated sorting genetic algorithm-III for the nonlinear active mount systems. The proposed method, intelligent adapter fractions proportional–integral–derivative controller, is a smart combination of the time delay estimation control and intelligent fractions proportional–integral–derivative with adaptive control parameters following the speed range of engine rotation via the deep neural network with the optimal non-dominated sorting genetic algorithm-III deep learning algorithm. Besides, we proposed optimal fuzzy logic controller with optimal parameters via particle swarm optimization algorithm to control reciprocal compensation to eliminate errors for intelligent adapter fractions proportional–integral–derivative controller. The control objective is to deal with the classical conflict between minimizing engine vibration impacts on the chassis to increase the ride comfort and keeping the dynamic wheel load small to ensure the ride safety. The results of this control method are compared with that of traditional proportional–integral–derivative controller systems, optimal proportional–integral–derivative controller parameter adjustment using genetic algorithms, linear–quadratic regulator control algorithms, and passive drive system mounts. The results are tested in both time and frequency domains to verify the success of the proposed optimal fuzzy logic controller–intelligent adapter fractions proportional–integral–derivative control system. The results show that the proposed optimal fuzzy logic controller–intelligent adapter fractions proportional–integral–derivative control system of the active engine mount system gives very good results in comfort and softness when riding compared with other controllers.


Author(s):  
Junghoon Chae ◽  
Catherine D. Schuman ◽  
Steven R. Young ◽  
J. Travis Johnston ◽  
Derek C. Rose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document