Cyclostratigraphy across a Mississippian carbonate ramp in the Esfahan–Sirjan Basin, Iran: implications for the amplitudes and frequencies of sea-level fluctuations along the southern margin of the Paleotethys

2018 ◽  
Vol 107 (6) ◽  
pp. 2233-2263 ◽  
Author(s):  
Aram Bayet-Goll ◽  
Fariba Shirezadeh Esfahani ◽  
Mehdi Daraei ◽  
Paolo Monaco ◽  
Mahmoud Sharafi ◽  
...  
2016 ◽  
Vol 154 (2) ◽  
pp. 305-333 ◽  
Author(s):  
C. N. WATERS ◽  
P. CÓZAR ◽  
I. D. SOMERVILLE ◽  
R. B. HASLAM ◽  
D. MILLWARD ◽  
...  

AbstractA rationalized lithostratigraphy for the Great Scar Limestone Group of the southeast Askrigg Block is established. The basal Chapel House Limestone Formation, assessed from boreholes, comprises shallow-marine to supratidal carbonates that thin rapidly northwards across the Craven Fault System, onlapping a palaeotopographical high of Lower Palaeozoic strata. The formation is of late Arundian age in the Silverdale Borehole, its northernmost development. The overlying Kilnsey Formation represents a southward-thickening and upward-shoaling carbonate development on a S-facing carbonate ramp. Foraminiferal/algal assemblages suggest a late Holkerian and early Asbian age, respectively, for the uppermost parts of the lower Scaleber Force Limestone and upper Scaleber Quarry Limestone members, significantly younger than previously interpreted. The succeeding Malham Formation comprises the lower Cove Limestone and upper Gordale Limestone members. Foraminiferal/algal assemblages indicate a late Asbian age for the formation, contrasting with the Holkerian age previously attributed to the Cove Limestone. The members reflect a change from a partially shallow-water lagoon (Cove Limestone) to more open-marine shelf (Gordale Limestone), coincident with the onset of marked sea-level fluctuations and formation of palaeokarstic surfaces with palaeosoils in the latter. Facies variations along the southern flank of the Askrigg Block, including an absence of fenestral lime-mudstone in the upper part of the Cove Limestone and presence of dark grey cherty grainstone/packstone in the upper part the Gordale Limestone are related to enhanced subsidence during late Asbian movement on the Craven Fault System. This accounts for the marked thickening of both members towards the Greenhow Inlier.


2018 ◽  
Author(s):  
Alfredo L. Aretxabaleta ◽  
Neil K. Ganju ◽  
Zafer Defne ◽  
Richard P. Signell

Abstract. Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a secondary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the Bay in the storm frequency band (transfers ranging from 70–100 %) and tidal frequencies (10–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The approach provides transfer estimates for locations inside the Bay where observations were not available resulting in a complete spatial characterization. The approach allows for the study of the Bay response to alternative forcing scenarios (landscape changes, future storms, and rising sea level). Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.


Radiocarbon ◽  
2021 ◽  
pp. 1-15
Author(s):  
Julia Caon Araujo ◽  
Kita Chaves Damasio Macario ◽  
Vinícius Nunes Moreira ◽  
Anderson dos Santos Passos ◽  
Perla Baptista de Jesus ◽  
...  

ABSTRACT The vermetidae fossils of Petaloconchus varians, formed by calcium carbonate, associated with their radiocarbon ages, are the most accurate indicators of paleo sea level due to their restricted occupation in the intertidal zone in the rocky shore. However, the recrystallization of minerals can affect these age calculations and, consequently, the interpretation of the data. The aim of this study is to present new indicators of paleo sea-level changes in Southeast Brazil for the last 6000 years contributing to fill the data gap for the late Holocene. The influence of the recrystallization process was successfully resolved using the CarDS protocol, enabling the separation of the original aragonite fraction by density, prior to radiocarbon dating. This avoids the rejuvenation of ages and ensures greater efficiency for data interpretation. Paleo sea-level indicators were able to show a progressive increase in sea level up to the transgressive maximum of 4.15 m in 3700 BP years, followed by a regression to the current zero. This regression seems to have in addition, here we reinforce the reliability of the use of fossil vermetids as indicators of sea-level fluctuations.


The Holocene ◽  
2016 ◽  
Vol 26 (12) ◽  
pp. 1924-1938 ◽  
Author(s):  
Yuji Ishii ◽  
Kazuaki Hori ◽  
Arata Momohara ◽  
Toshimichi Nakanishi ◽  
Wan Hong

This study investigated the influence of sea-level and climate changes on the decreased fluvial aggradation and subsequent widespread peat initiation in the middle to late-Holocene in the Ishikari lowland, which is a coastal floodplain formed in response to the postglacial sea-level change. By introducing a new approach to separately evaluate the rates of organic and clastic sediment input, we demonstrated that the peat began to form when the fluvial sedimentation rate was significantly decreased (less than 0.6 mm/yr), while plant macrofossil analysis suggested that lowering of water level is also important to the peat initiation. Such changes in sedimentary environment may be associated with the abrupt abandonment of crevasse splays. The concentrated ages of the peat initiation around 5600–5000, 4600–4300, and 4100–3600 cal. BP suggest that an allogenic control promoted the abandonment of crevasse splays, and different onset ages can be explained by different fluvial responses of the Ishikari River and its tributaries. The abandonment of crevasse splays could result from sea-level fall or decreased precipitation. While submillennial sea-level fluctuations coincident with the peat initiation have not been reported in coastal lowlands of Japan, the close comparison of the onset ages and decreased precipitation recorded in a stalagmite from China, which represents the strength of the East Asian summer monsoon (EASM), suggests that decrease in precipitation led to the abandonment of crevasse splays. Our results may indicate that similar fluvial responses might be common in other coastal floodplains affected by the EASM.


Sign in / Sign up

Export Citation Format

Share Document