scholarly journals Metabasic rocks from the Variscan Schwarzwald (SW Germany): metamorphic evolution and igneous protoliths

Author(s):  
Rainer Altherr ◽  
Stefan Hepp ◽  
Hans Klein ◽  
Michael Hanel

AbstractIn the Variscan Schwarzwald metabasic rocks form small bodies included within anatectic plagioclase-biotite gneisses. Many metabasites first underwent an eclogite-facies metamorphism at about 2.0 GPa and 670–700 °C, resulting in the assemblage garnet + omphacite + rutile + quartz ± epidote ± amphibole ± kyanite. Since these eclogites are nearly free of an OH-bearing phase, they underwent almost complete dehydration during subduction, suggesting formation along an average to warm top-of-the-slab geotherm of 10–13 °C/km. The age of the Variscan high-P/high-T metamorphism is > 333 Ma. After partial exhumation from ~ 65 to ~ 15 km depth, the eclogites were overprinted under increasing activity of H2O by a number of retrograde reactions. The degree of this overprint under amphibolite-facies conditions (0.4–0.5 GPa/675–690 °C) was very different. Up to now, only retrograde eclogites have been found, but some samples still contain omphacite. Kyanite is at least partially transformed to aggregates of plagioclase + spinel ± corundum ± sapphirine. On the other hand, there are amphibolites that are extensively recrystallized and show the assemblage amphibole + plagioclase + ilmenite/titanite ± biotite ± quartz ± sulphides. The last relic phase that can be found in such otherwise completely recrystallized amphibolites is rutile. After the amphibolite-facies metamorphism at ~ 333 Ma, the metabasites underwent a number of low-temperature transformations, such as sericitization of plagioclase, chloritization of amphibole, and formation of prehnite. The intimate association of metabasite bodies with gneisses of dominantly meta-greywacke compositions suggests derivation from an active plate margin. This view is corroborated by bulk-rock geochemical data. Excluding elements that were mobile during metamorphism (Cs, Rb, Ba, K, Pb, Sr, U), the concentrations of the remaining elements in most of the metabasites are compatible with a derivation from island-arc tholeiites, back-arc basin basalts or calc-alkaline basalts. Only some samples have MORB precursor rocks.

2021 ◽  
Author(s):  
Long Zhang ◽  
Zhenyu Chen ◽  
Fangyue Wang ◽  
Noel C. White ◽  
Taofa Zhou

Abstract Uraninite is the main contributor to the bulk-rock uranium concentration in many U-rich granites and is the most important uranium source for granite-related uranium deposits. However, detailed textural and compositional evolution of magmatic uraninite in granites during alteration and associated uranium mobilization have not been well documented. In this study, textures and geochemistry of uraninites from the Zhuguangshan batholith (South China) were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The geochemical data indicate that the Longhuashan and Youdong plutons are peraluminous leucogranite, the Changjiang pluton is highly fractionated high-K calc-alkaline granite, and the Jiufeng pluton belongs to a high-K calc-alkaline association. Uraninites from the Longhuashan and Youdong granites have lower concentrations of ThO2 (0.9–4.0 wt %) and rare earth elements (REE)2O3 (0.1–1.0 wt %) than those from the Changjiang and Jiufeng granites (ThO2 = 4.4–7.6 wt %, REE2O3 = 0.7–5.1 wt %). Uraninites observed in the Longhuashan, Youdong, Changjiang, and Jiufeng granites yielded chemical ages of 223 ± 3, 222 ± 2, 157 ± 1, and 161 ± 2 Ma, respectively. The samples (including altered and unaltered) collected from the Longhuashan, Youdong, and Changjiang granites are characterized by highly variable whole-rock U concentrations of 6.9 to 44.7 ppm and Th/U ratios of 0.9 to 7.0, consistent with crystallization of uraninite in these granites being followed by uranium leaching during alteration. Alteration of uraninite, indicated by altered domains developing microcracks and appearing darker in backscattered electron (BSE) images compared to unaltered domains, results in the incorporation of Si and Ca and mobilization of U. In contrast, the least altered samples of the unmineralized Jiufeng granite have low U concentrations (5.3–16.4 ppm) and high ΣREE/U (13.6–49.4) and Th/U ratios (2.1–5.6), which inhibit crystallization of uraninite, as its crystallization occurs when the U concentration is high enough to exceed the substitution capacity of other U-bearing minerals. These results indicate that the Longhuashan, Youdong, and Changjiang granites were favorable uranium sources for the formation of uranium deposits in this area. This study highlights the potential of uraninite alteration and geochemistry to assist in deciphering uranium sources and enrichment processes of granite-related uranium deposits.


1997 ◽  
Vol 34 (12) ◽  
pp. 1630-1643 ◽  
Author(s):  
Stig M. Bergström ◽  
Warren D. Huff ◽  
Dennis R. Kolata ◽  
Michael J. Melchin

The most extensive succession of K-bentonite beds known in the Silurian of North America occurs at Arisaig on the northern coast of Nova Scotia. At least 40 ash beds are present in the Llandoverian Ross Brook Formation and at least four in the early Ludlovian McAdam Brook Formation. Most of the beds are thin (< 5 cm), but one bed (the Smith Brook K-bentonite bed) in the late Llandoverian crenulata Zone and another (the McAdam Brook K-bentonite bed) in the early Ludlovian nilssoni Zone each reach a thickness of 20 cm. New graptolite collections provide critical information on the biostratigraphic position of the K-bentonite beds in the Ross Brook Formation. Geochemical data show that the Arisaig ash beds represent calc-alkaline magmas from plate margin, subduction-related volcanic vents. Differences in K-bentonite stratigraphic distribution, combined with paleogeographic considerations, suggest that the volcanoes were located much farther to the south in the Iapetus than the source volcanoes of the British–Baltoscandian Llandoverian K-bentonites.


1987 ◽  
Vol 24 (3) ◽  
pp. 471-478 ◽  
Author(s):  
G. S. Clark ◽  
W. Weber

Late Archean, post-kinematic, uraniferous granite and alaskite occur as several discrete large and small bodies in the 250 km long Molson Lake – Red Sucker Lake batholithic belt, in the western Gods Lake subprovince. Sampled over this length, this unit gave a Rb–Sr whole-rock age of 2495 ± 30 Ma with an initial 87Sr/86Sr ratio of 0.7053 ± 0.0023. The excellent fit of the data points suggest a common, isotopically homogeneous source of magma for the analyzed granite bodies. The initial ratio is consistent with an origin from partial melting of older calc-alkaline rocks, and evidence suggests this event accompanied granulite-facies metamorphism. Based on recent U–Pb zircon ages, this event could have occurred as much as 200 Ma prior to closure of the Rb–Sr isotopic system.An older, monzonite–quartz diorite unit gives a less well-defined age of 2690 Ma, consistent with a U–Pb zircon age from the same unit. This pluton is intrusive into older, tonalitic gneisses and is part of a widespread suite of granitoid plutonic rocks in this subprovince. This pluton gives a low, mantle-like initial ratio, indicating juvenile additions to the crust during this period of batholithic development, consistent with findings for calc-alkaline granitoids in Archean shield areas elsewhere in the world.


2002 ◽  
Vol 39 (5) ◽  
pp. 711-730 ◽  
Author(s):  
John W.F Ketchum ◽  
Nicholas G Culshaw ◽  
Sandra M Barr

The Makkovik Province is a segment of a Paleoproterozoic accretionary belt (the Makkovik–Ketilidian orogen) that developed on the southern margin of Laurentia at 1.9–1.7 Ga. In contrast to coeval Laurentian orogenic belts that mainly resulted from collision of Archean plates, Makkovikian–Ketilidian orogenesis was dominated by active-margin processes including continental margin arc plutonism and juvenile terrane accretion, both of which were accompanied by regional transpression. In the Makkovik Province, earliest deformation and amphibolite-facies metamorphism of Paleoproterozoic rift–drift assemblages (Post Hill and Moran Lake groups) and the Archean foreland (Nain Province) occurred at 1.9 Ga in response to accretion of a Paleoproterozoic island arc. Following this collision, cratonward-dipping subduction was established, resulting in the formation of the 1895–1870 Ma Island Harbour Bay Plutonic Suite, a calc-alkaline magmatic arc built on reworked Archean crust. Crust formation continued between ca. 1860 and 1850 Ma with deposition of the Aillik Group on a largely juvenile basement in a rifted-arc or back-arc setting. Sometime before 1802 Ma this depositional basin was tectonically inverted, with resultant northwestward thrusting of the Aillik Group over reworked Archean crust. This phase of deformation may have been driven by accretion of a second island arc potentially represented by the Cape Harrison Metamorphic Suite. Regional transpression and amphibolite-facies metamorphism at ca. 1815–1780 Ma were accompanied by widespread granitoid plutonism. These events were mainly concentrated in the juvenile domains and are thought to reflect processes in a broad continental back-arc setting. A final orogenic pulse, marked by regional greenschist-facies transpression and emplacement of A-type granitoid plutons, occurred between 1740 and 1700 Ma, with deformation and plutonism potentially linked to crust–mantle detachment and incursion of mafic magmas at the base of the crust, respectively. The record of crustal development suggests that the coeval themes of spatially and temporally linked structural and plutonic activity, oceanward migration of this activity over time, and a trend toward increasingly more localized deformation occurred throughout the orogenic history of the Makkovik Province. These characteristics are thought to broadly reflect oceanward crustal growth of the orogen over time. In the correlative Ketilidian mobile belt of southern Greenland, these themes were also operative but appear to have been less pronounced, most likely due to minimal or a complete absence of accretion of island-arc material.


1985 ◽  
Vol 22 (7) ◽  
pp. 980-991
Author(s):  
V. E. Chamberlain ◽  
R. St J. Lambert ◽  
J. G. Holland

Petrographic, geochemical, and geochronological data are presented on the gneisses of the Bulldog Creek block, the Mount Blackman block, and the Hugh Allan Creek block, which lie to the east of the Southern Rocky Mountain Trench (SRMT) south of Valemount, British Columbia.Petrographical and geochemical data, especially immobile-trace-element ratios (Nb: Y, Ti: Zr), and CaO versus Y and AFM plots are used to deduce the probable origins and protoliths of the gneisses. The Mount Blackman block consists of a psammitic paragneiss, probably derived from an immature arkosic sedimentary protolith, intruded by sills of tholeiitic basalt, now amphibolites. The Bulldog Creek block consists of felsic orthogneisses of calc-alkaline affinity, which are structurally concordant with mafic orthogneisses of possible tholeiitic basalt parentage. The Hugh Allan Creek block consists of a felsic orthogneiss with a probable alkaline granite protolith.Rb–Sr, and some U–Pb analyses show that each block has experienced a separate geological history. The Mount Blackman block psammitic paragneisses are the only analysed gneisses east of SRMT with a probable Archean Rb–Sr model crustal residence age. U–Pb analyses on zircons from these gneisses give a 1950 Ma minimum source rock age, and Rb–Sr whole-rock analyses suggest a 1860 ± 50 Ma age for amphibolite-facies metamorphism of both paragneisses and amphibolites. The Bulldog Creek block gneisses have a metamorphic age of at least 640 Ma, but their Rb–Sr systematics have been extensively disturbed, possibly during Mesozoic retrogressive metamorphism. The Hugh Allan Creek block gneisses have a Rb–Sr model crustal residence age of ~900 Ma and a metamorphic age of 805 ± 11 Ma. It is not possible to correlate any of these lithologies or events across the SRMT with the Malton block, and it is concluded that the SRMT is the site of a major fault or faults at this latitude.


2021 ◽  
pp. jgs2020-221
Author(s):  
Guichun Liu ◽  
Guangyan Chen ◽  
M. Santosh ◽  
Xin Qian ◽  
Zaibo Sun ◽  
...  

Early Paleozoic trondhjemites, gneissic granites and alkali granites in southern Yunnan preserve important records of the tectonic evolution of the Prototethyan Ocean and regional correlations. Zircon ages suggest that these granitoids were emplaced from 476 to 436 Ma. The trondhjemites are characterized by high Na2O and low K2O contents, with εNd(t) values of −1.9 to −3.5 and εHf(t) values of −2.8 to +3.9. The trondhjemites were derived from an amphibolite source with a juvenile mafic component. The gneissic granites belong to the metaluminous low-K calc-alkaline series with an εNd(t) value of −6.2 and εHf(t) values of −5.0 to −0.4. The alkali granites belong to the high-K calc-alkaline series and yield εNd(t) values of −10.1 to −10.7 and εHf(t) values of −7.9 to −2.3. The gneissic granites were derived from an ‘ancient' lower mafic crust, whereas the alkali granites were derived from a meta-sedimentary source. These granitoids were formed during the subduction of the Prototethyan Ocean beneath the Simao Block and can be compared with similar igneous rocks from the Truong Son and Tam Ky-Phuoc Son zones in southern Laos. Our study, along with Early Paleozoic igneous suites from southern Laos, central Vietnam and the Malay Peninsula, suggests an arc–back-arc system along the northern margin of Gondwana.Supplementary material: Tables of zircon U–Pb and in-situ Hf and geochemical data are available at https://doi.org/10.6084/m9.figshare.c.5322386


1981 ◽  
Vol 29 ◽  
pp. 161-174
Author(s):  
Hans Christian Larsen

Aeromagnetic, geological and geochemical data demonstrate the presence of a high-pressure, granu­Iite-facies gneiss complex about 400 km2 in area within a previously almost unexplored nunatak region between latitudes 74°30 and 75°N in northern East Greenland. The gneiss complex is surrounded and in part overthrust by supracrustal rocks of very high amphibolite facies, including garnet-clinopyroxene rocks of eclogitic affinity. A magnetically anomalous area is related to exposures of granulite facies rocks, whereas the surrounding supracrustals give rise to a magnetic smooth zone. Several, independent sets of observations indicate that the granulite facies metamorphism and the high amphibolite facies metamor­phism were related to the same metamorphic event. Maximum temperatures of about 740°C and maximum pressures of about 12.5 kb were reached (kyanite formation) later decreasing to about 10 kb (sillimanite formation). Comparisons with other parts of the East Greenland fold belt suggest a probable Archaean origin for the central gneiss complex and an early or middle Proterozoic age for the granulite and amphibolite facies metamorphism. There are no indications of Caledonian metamorphic events, in contrast to the previously assumed Caledonian origin for the area.


2020 ◽  
Vol 157 (11) ◽  
pp. 1853-1876
Author(s):  
Mohssen Moazzen ◽  
Zohreh Salimi ◽  
Yann Rolland ◽  
Michael Bröcker ◽  
Robab Hajialioghli

AbstractMetamorphic rocks associated with ophiolitic rocks occur on the eroded surface of a NW–SE-trending anticline in the Allahyarlu area, NW Iran, between the Caucasus and Zagros orogenic belts. Metapelitic rocks consist mainly of quartz, muscovite chlorite, altered biotite and garnet. S1 is the pervasive schistosity, wrapping garnet, which is folded by the second schistosity (S2). The amphibolite records only one phase of deformation as the main lineation. The rocks experienced metamorphism up to the amphibolite facies, then overprinted by greenschist facies condition. Thermobarometry indicates an average pressure of c. 5 kbar and an average temperature of c. 600 °C for the amphibolite facies metamorphism, corresponding to a ∼33 °C km−1 geothermal gradient in response to a thick magmatic arc setting. Greenschist facies metamorphism shows re-equilibration of the rocks during exhumation. Amphibolites whole rock geochemistry shows trace elements patterns similar to both island arc and back-arc basin basalts, suggesting that the protolith-forming magma of the amphibolites was enriched at shallow to medium depth of a subduction system. Negative Nb anomaly and slight enrichment in light rare earth elements (LREE) and large-ion lithophile elements (LILE) of the amphibolites indicate arc-related magmatism for their protolith and a back-arc sialic setting for their formation. 40Ar–39Ar dating on muscovite separated from two gneiss samples, and hornblende separated from three amphibolite samples, documents a Variscan (326–334 Ma) age. The magmatic and metamorphic rock association of the Allahyarlu area suggests the existence of an active continental margin arc during the Variscan orogeny, without clear evidence for a continental collision.


2020 ◽  
Author(s):  
Adrian E. Castro ◽  
◽  
Chloe Bonamici ◽  
Christopher G. Daniel ◽  
Danielle Shannon Sulthaus

Sign in / Sign up

Export Citation Format

Share Document