Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue

2017 ◽  
Vol 52 (12) ◽  
pp. 1240-1251 ◽  
Author(s):  
Xianbin Cai ◽  
Shuhei Hayashi ◽  
Chongye Fang ◽  
Shumei Hao ◽  
Xuanjun Wang ◽  
...  
2019 ◽  
Author(s):  
Lisa Y. Beppu ◽  
Xiaoyao Qu ◽  
Giovanni J. Marrero ◽  
Allen N. Fooks ◽  
Adolfo B. Frias ◽  
...  

ABSTRACTCrosstalk between the immune system and adipocytes is critical for maintaining tissue homeostasis and regulating chronic systemic inflammation during diet-induced obesity (DIO). How visceral adipose tissue resident regulatory T cells (aTregs) signal to adipocytes in the visceral adipose tissue (VAT) is not understood. Here we show that Treg-specific ablation of the transcriptional regulator Blimp-1 resulted in increased insulin sensitivity, decreased body weight and increased Ucp-1 in adipocytes in high fat diet (HFD)-fed mice. Mechanistically, we demonstrate that Blimp-1 drives IL-10 production in Tregs, thus suppressing beiging and energy expenditure in adipocytes. Moreover, IL-10 mRNA expression positively correlated with increasing body weight in humans. These findings reveal a surprising relationship between aTregs and adipocytes in promoting insulin resistance during excessive caloric intake, placing Blimp-1-regulated IL-10 expression by aTregs at a critical juncture in the development of obesity and its associated comorbidities in mice and humans.SUMMARYHere we show that ablation of Blimp-1 in adipose tissue resident Tregs (aTregs) leads to decreased IL-10 production, resulting in increased Ucp-1 expression and beiging by adipocytes and protection from diet-induced obesity and insulin resistance.


2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


2020 ◽  
Author(s):  
Luisa Fernández-Chirino ◽  
Neftali Eduardo Antonio-Villa ◽  
Arsenio Vargas-Vázquez ◽  
Paloma Almeda-Valdés ◽  
Donají Gómez-Velasco ◽  
...  

BACKGROUND: Serum uric acid (SUA) has a relationship with cardiometabolic conditions such as insulin resistance (IR) and visceral adipose tissue (VAT) accumulation. Here, we aimed to clarify the nature of this relationship and the underlying causality mechanism. METHODS: We conducted a population-based cross-sectional study comprising 8,504 subjects joining both NHANES 2003-2004 and 2011-2012 cycles and ENSANUT Medio Camino 2016. We performed mixed effects linear regression models using HOMA2-IR, adipoIR, and METS-VF as indicators of IR and VAT accumulation. Furthermore, we performed mediation analyses to assess a potential causal mechanism and ROC curves to establish cut-off points for identification of IR and visceral obesity using SUA. Finally, with an additional dataset comprised of 226 subjects with both euglycemic hyperinsulinemic clamp (EHC) and dual X-ray absorptiometry (DXA) measurements for IR and VAT accumulation, we performed a network of confirmatory mediation analyses. RESULTS:We found that SUA has a mediating role inside the bidirectional relationship between IR and visceral obesity, and it is part of an underlying causality mechanism which includes adiponectin. The proportion of the mechanism mediated by SUA is greater when stated that IR (in either peripheral or adipose tissue) leads to VAT accumulation (14.90%[13.20%-17.00%] and 15.54%[13.61% - 18.00%] to 4.88%[3.06%-7.00%] and 8.13%[5.91% - 10.00%]) instead of the opposite direction. This result was confirmed by mediation analyses using gold-standard measurements. CONCLUSIONS:Elevated SUA acts as mediator inside the bidirectional relationship between IR andVAT accumulation. Its role appears to be larger when considering adipose tissue IR as the promoter for VAT accumulation.


2016 ◽  
Vol 62 (5) ◽  
pp. 45-46
Author(s):  
Paulina Ormazabal ◽  
Beatrice Scazzocchio ◽  
Rosaria Varì ◽  
Annunziata Iacovelli ◽  
Roberta Masella

Adipocytes exposed to high glucose concentrations exhibit impaired insulin signaling. Binding of insulin to its membrane receptor activates insulin metabolic pathway leading to IRS-1 and AKT phosphorylations. The accumulation of visceral adipose tissue (VAT) correlates with insulin resistance and metabolic syndrome. Anthocyanins (ACN) are bioactive food compounds of great nutritional interest. We have shown that protocatechuic acid (PCA), a major metabolite of ACN, might exert insulin-sensitizer activities in human visceral adipose tissue. The aim of this work was to define the protective role of PCA against insulin-resistance induced by high glucose in VAT.Methodology: VAT obtained from control subject (BMI≤25) were separated in four experimental groups: i) PCA: samples treated for 24 h with 100 μM PCA, ii) GLU: VAT treated with 30 mM glucose for 24 h, iii) PCA+GLU: 1 hour incubation with 100 μM PCA before adding glucose (30 mM, 24 h), iv) CTR: vehicle. After treatment, VAT groups were (or not) acutely stimulated with insulin (20 nM, 20 min). Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting (WB) in basal or insulin stimulated tissues in all experimental groups. Samples were assessed for IRS-1, IR, Akt and GLUT4 protein content by WB. Results: No differences in protein contents between experimental groups were found. GLU tissues showed a lower increment in insulin-stimulated phosphorylation of IRS-1 and Akt compared to CTR and PCA samples. This impaired activation was completely reversed by the pretreatment with PCA.Conclusion: An in-vitro insulin-resistance condition induced by high glucose was established in biopsies of VAT. PCA restores the ability of GLU-tissues to fully respond to insulin by increasing IRS-1 and Akt phosphorylations. These results confirm the insulin-sensitizer effect of PCA on VAT previously reported by our group. An anthocyanin rich diet might help to protect against insulin-resistance in VAT.


Obesity ◽  
2010 ◽  
Vol 18 (11) ◽  
pp. 2191-2198 ◽  
Author(s):  
Sarah R. Preis ◽  
Joseph M. Massaro ◽  
Sander J. Robins ◽  
Udo Hoffmann ◽  
Ramachandran S. Vasan ◽  
...  

Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Anne E Sumner ◽  
Michelle Y O'Connor ◽  
Caroline K Thoreson ◽  
Madia Ricks ◽  
Amber B Courville ◽  
...  

In decades past, African immigrants were considered to have better cardiometabolic health than African Americans. Whether this health advantage continues to exist in the 21st century is unknown. To explore differences in markers of cardiometabolic health, oral glucose tolerance tests, blood pressure (BP), visceral adipose tissue (VAT) volume and the waist circumference (WC) which predicts insulin resistance were compared in 210 men (134 African immigrants, 76 African Americans, mean age 36±9y (mean±SD), range 20-64y) who self-identified as healthy. Insulin resistance was defined by the lowest quartile of the insulin sensitivity index (SI≤2•28mU/L-1.min-1). Receiver operating characteristic curves and the Youden Index were used to identify the WC which optimally predicts insulin resistance. BMI was lower in African immigrants than African Americans (27.4±3.9 vs. 29.3±5.5kg/m2, P<0.01). Adjusting for BMI, WC did not differ between groups (93±5 vs. 94±5cm, P=0.55); but African immigrants had more visceral adipose tissue (VAT) (P<0.001) higher BP (P≤0.01), higher fasting glucose (P≤0.001) and 2h glucose (P<0.001) as well as a higher prevalence of previously undiagnosed diabetes (7% (9 of 134) vs. 0% (0 of 76), P<0.01) and pre-diabetes (35% (47 of 134) vs. 22% (17 of 76), P<0.01). Degree of insulin resistance did not differ in African immigrants and African Americans (4.17±2.88 vs. 4.24±2.61 (mU/L)-1 .min-1, P=0.88). Yet, the WC which optimally predicted insulin resistance was lower in African immigrants than African Americans, specifically 92 cm and 102 cm, respectively. As African immigrants had higher VAT, BP and glucose levels than African Americans, the healthy immigrant effect may no longer be a valid concept. As insulin resistance occurred at a lower WC in African immigrants than African Americans, lower BMI in African immigrants does not appear to provide protection from cardiometabolic risk.


2012 ◽  
Vol 108 (8) ◽  
pp. 1511-1518 ◽  
Author(s):  
Jéferson F. Goularte ◽  
Maria B. C. Ferreira ◽  
Gilberto L. Sanvitto

Obesity affects a large number of people around the world and appears to be the result of changes in food intake, eating habits and physical activity levels. Changes in dietary patterns and physical exercise are therefore strongly recommended to treat obesity and its complications. The present study tested the hypothesis that obesity and metabolic changes produced by a cafeteria diet can be prevented with dietary changes and/or physical exercise. A total of fifty-six female Wistar rats underwent one of five treatments: chow diet; cafeteria diet; cafeteria diet followed by a chow diet; cafeteria diet plus exercise; cafeteria diet followed by a chow diet plus exercise. The duration of the experiment was 34 weeks. The cafeteria diet resulted in higher energy intake, weight gain, increased visceral adipose tissue and liver weight, and insulin resistance. The cafeteria diet followed by the chow diet resulted in energy intake, body weight, visceral adipose tissue and liver weight and insulin sensitivity equal to that of the controls. Exercise increased total energy intake at week 34, but produced no changes in the animals' body weight or adipose tissue mass. However, insulin sensitivity in animals subjected to exercise and the diet was similar to that of the controls. The present study found that exposure to palatable food caused obesity and insulin resistance and a diet change was sufficient to prevent cafeteria diet-induced obesity and to maintain insulin sensitivity at normal levels. In addition, exercise resulted in normal insulin sensitivity in obese rats. These results may help to develop new approaches for the treatment of obesity and type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document