Trans-palmitoleic Acid Reduces Adiposity via Increased Lipolysis in a Rodent Model of Diet-Induced Obesity

2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.

2019 ◽  
Author(s):  
Lisa Y. Beppu ◽  
Xiaoyao Qu ◽  
Giovanni J. Marrero ◽  
Allen N. Fooks ◽  
Adolfo B. Frias ◽  
...  

ABSTRACTCrosstalk between the immune system and adipocytes is critical for maintaining tissue homeostasis and regulating chronic systemic inflammation during diet-induced obesity (DIO). How visceral adipose tissue resident regulatory T cells (aTregs) signal to adipocytes in the visceral adipose tissue (VAT) is not understood. Here we show that Treg-specific ablation of the transcriptional regulator Blimp-1 resulted in increased insulin sensitivity, decreased body weight and increased Ucp-1 in adipocytes in high fat diet (HFD)-fed mice. Mechanistically, we demonstrate that Blimp-1 drives IL-10 production in Tregs, thus suppressing beiging and energy expenditure in adipocytes. Moreover, IL-10 mRNA expression positively correlated with increasing body weight in humans. These findings reveal a surprising relationship between aTregs and adipocytes in promoting insulin resistance during excessive caloric intake, placing Blimp-1-regulated IL-10 expression by aTregs at a critical juncture in the development of obesity and its associated comorbidities in mice and humans.SUMMARYHere we show that ablation of Blimp-1 in adipose tissue resident Tregs (aTregs) leads to decreased IL-10 production, resulting in increased Ucp-1 expression and beiging by adipocytes and protection from diet-induced obesity and insulin resistance.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahya M. Naguib ◽  
Rehab M. Samaka ◽  
Mohamed S. Rizk ◽  
Omnia Ameen ◽  
Shaimaa M. Motawea

Abstract Background The prevalence of hypertension and obesity has increased significantly in recent decades. Hypertension and obesity often coexist, and both are associated with increased cardiovascular mortality. Obese hypertensive patients usually require special anti-hypertensive treatment strategy due to the increased risk of treatment resistance. Molecules that can target both obesity and hypertension underlying pathologies should get more attention. Herein, we evaluated the therapeutic effects of telmisartan, with special interest in visceral adipose tissue dysfunction, in obesity-related hypertension rat model. Methods Thirty male Wistar rats weighing 150–200 g were equally divided into: 1—Control group (fed normal laboratory diet for 24 weeks), 2—Diet-induced obesity group (DIO, fed high fat diet for 24 weeks), and 3—Diet-induced obesity treated with telmisartan group (DIO + Tel, fed high fat diet and received telmisartan for 24 weeks). At the end of the study, anthropometrical parameters were evaluated. Systolic blood pressure and heart rate were measured. Blood samples were collected for the measurement of serum lipids, adipokines, cardiac, renal, inflammatory, and oxidative stress biomarkers. Kidneys were removed and used for histopathological studies, and visceral adipose tissue was utilized for histopathological, immunohistochemical and RT-PCR studies. Results High fat diet resulted in obesity-related changes in anthropometrical parameters, elevation of blood pressure, increase in heart rate, higher serum levels of cardiac, inflammatory and kidney function biomarkers, with altered serum lipids, adipokines and oxidative stress markers. Morphological changes (H&E and PAS-stained sections) were noticed in kidneys and visceral adipose tissue. Immunohistochemistry and RT-PCR studies confirmed adipose tissue dysfunction and over-expression of inflammatory and oxidative stress proteins. Telmisartan countered obesity-induced alterations in cardiovascular, renal, and adipose tissue functions. Conclusion Adipose tissue dysfunction could be the core pathophysiology of obesity-related hypertension. Besides its anti-hypertensive effect, telmisartan had profound actions on visceral adipose tissue structure and function. Attention should be given to polymodal molecules targeting adipose tissue-related disorders.


2017 ◽  
Vol 44 (3) ◽  
pp. 386-394 ◽  
Author(s):  
Sílvia Rocha-Rodrigues ◽  
Amaia Rodríguez ◽  
Sara Becerril ◽  
Beatriz Ramírez ◽  
Inês O Gonçalves ◽  
...  

2020 ◽  
Vol 11 (3) ◽  
pp. 2418-2426 ◽  
Author(s):  
Mailin Gan ◽  
Linyuan Shen ◽  
Shujie Wang ◽  
Zhixian Guo ◽  
Ting Zheng ◽  
...  

Genistein may regulate lipid metabolism in adipose tissue of obese mice by regulating the expression of miR-222 and its target genes, BTG2 and adipor1.


ACS Nano ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 5099-5110 ◽  
Author(s):  
Mengying Wei ◽  
Xiaotong Gao ◽  
Lijun Liu ◽  
Zhelong Li ◽  
Zhuo Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document