scholarly journals The feasibility of energy autonomy for municipalities: local energy system optimisation and upscaling with cluster and regression analyses

Author(s):  
Jann Michael Weinand ◽  
Russell McKenna ◽  
Wolf Fichtner

AbstractThe sheer number of alternative technologies and measures make the optimal planning of energy system transformations highly complex, requiring decision support from mathematical optimisation models. Due to the high computational expenses of these models, only individual case studies are usually examined. In this article, the approach from the author’s PhD thesis to transfer the optimisation results from individual case studies to many other energy systems is summarised. In the first step, a typology of the energy systems to be investigated was created. Based on this typology, representative energy systems were selected and analysed in an energy system optimisation model. In the third step, the results of the representative case studies were transferred to all other energy systems. This approach was applied to a case study for determining the minimum costs of energy system transformation for all 11,131 German municipalities from 2015 to 2035 in the completely energy autonomous case. While a technical potential to achieve energy autonomy is present in 56% of the German municipalities, energy autonomy shows only low economic potential under current energy-political conditions. However, energy system costs in the autonomous case can be greatly reduced by the installation and operation of base-load technologies like deep-geothermal plants combined with district heating networks. The developed approach can be applied to any type of energy system and should help decision makers, policy makers and researchers to estimate optimal results for a variety of energy systems using practical computational expenses.

Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 52
Author(s):  
Annette Steingrube ◽  
Keyu Bao ◽  
Stefan Wieland ◽  
Andrés Lalama ◽  
Pithon M. Kabiro ◽  
...  

District heating is seen as an important concept to decarbonize heating systems and meet climate mitigation goals. However, the decision related to where central heating is most viable is dependent on many different aspects, like heating densities or current heating structures. An urban energy simulation platform based on 3D building objects can improve the accuracy of energy demand calculation on building level, but lacks a system perspective. Energy system models help to find economically optimal solutions for entire energy systems, including the optimal amount of centrally supplied heat, but do not usually provide information on building level. Coupling both methods through a novel heating grid disaggregation algorithm, we propose a framework that does three things simultaneously: optimize energy systems that can comprise all demand sectors as well as sector coupling, assess the role of centralized heating in such optimized energy systems, and determine the layouts of supplying district heating grids with a spatial resolution on the street level. The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town. In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter, central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more expensive than decentral heating technologies.


Author(s):  
Juan Gea Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model to simulate Day-ahead markets of large-scale multi-energy systems with high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of increasing considerably the computational time. Relaxing integer variables reduces significantly the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be specially useful for system operators for optimal operational planning.


Author(s):  
Vladimir K. Averyanov ◽  
Aleksey A. Melezhik ◽  
Alexander S. Gorshkov ◽  
Yury V. Yuferev

The paper defines the main factors of the smart energy systems that influence on the district heating. Noted increase in the regulatory impact of electric energy system on the district heating and increase in roles of the distribution and consumption of thermal energy. Urban population and other consumers of energy become equal partners of the utilities and acquire the status of "active" consumers. The heating supply companies need to develop a new model of management of heating regimes with dynamic synchronization with energy system and "active" consumers. One of the most important conditions of the achievement of the cost reduction, reliability and quality increase in community facilities is active consumer's behavior.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2520 ◽  
Author(s):  
Francesco Calise ◽  
Mário Costa ◽  
Qiuwang Wang ◽  
Xiliang Zhang ◽  
Neven Duić

EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 88
Author(s):  
Juan Gea-Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model in order to simulate Day-ahead markets of large-scale multi-energy systems with a high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources, such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of considerably increasing the computational time. Relaxing integer variables significantly reduces the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be especially useful for system operators for optimal operational planning.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8195
Author(s):  
Omais Abdur Rehman ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Luisa F. Cabeza

In order to reduce greenhouse gas emissions, current and future energy systems need to be made more efficient and sustainable. This change can be accomplished by increasing the penetration of renewable energy sources and using efficient technologies in energy generation systems. One way to improve the operation of the whole energy system is through the generation and end-use sector coupling. Power-to-heat energy conversion and storage technologies, in this view, are enabling technologies that can help in balancing and improving the efficiency of both thermal and electric grids. In the present paper, a comprehensive analysis of the role of heat pumps and thermal energy storage for sector coupling is presented. The main features of the analyzed technologies are presented in the context of smart electric grid, district heating and cooling and multi-carrier energy systems, and recent findings and developments are highlighted. Finally, the technical, social, and economic challenges in the adoption of investigated technologies are discussed.


2021 ◽  
Vol 13 (9) ◽  
pp. 5217
Author(s):  
Tobias Naegler ◽  
Lisa Becker ◽  
Jens Buchgeister ◽  
Wolfgang Hauser ◽  
Heidi Hottenroth ◽  
...  

Sustainable development embraces a broad spectrum of social, economic and ecological aspects. Thus, a sustainable transformation process of energy systems is inevitably multidimensional and needs to go beyond climate impact and cost considerations. An approach for an integrated and interdisciplinary sustainability assessment of energy system transformation pathways is presented here. It first integrates energy system modeling with a multidimensional impact assessment that focuses on life cycle-based environmental and macroeconomic impacts. Then, stakeholders’ preferences with respect to defined sustainability indicators are inquired, which are finally integrated into a comparative scenario evaluation through a multi-criteria decision analysis (MCDA), all in one consistent assessment framework. As an illustrative example, this holistic approach is applied to the sustainability assessment of ten different transformation strategies for Germany. Applying multi-criteria decision analysis reveals that both ambitious (80%) and highly ambitious (95%) carbon reduction scenarios can achieve top sustainability ranks, depending on the underlying energy transformation pathways and respective scores in other sustainability dimensions. Furthermore, this research highlights an increasingly dominant contribution of energy systems’ upstream chains on total environmental impacts, reveals rather small differences in macroeconomic effects between different scenarios and identifies the transition among societal segments and climate impact minimization as the most important stakeholder preferences.


2020 ◽  
Vol 162 (4) ◽  
pp. 1877-1891 ◽  
Author(s):  
Saritha S. Vishwanathan ◽  
Amit Garg

AbstractIndia’s commitment to Paris Climate Change Agreement through its Nationally Determined Contribution (NDC) will require the energy system to gradually move away from fossil fuels. The current energy system is witnessing a transformation to achieve these through renewable energy targets and enhanced energy efficiency (EE) actions in all sectors. More stringent global GHG mitigation targets of 2 °C and well below 2 °C regimes would impose further challenges and uncertainties for the Indian energy systems. This paper provides a quantitative assessment using bottom-up optimization model (AIM/Enduse) to assess these until 2050 for meeting carbon mitigation commitments while achieving the national sustainable development goals. Energy transformation trajectories under five scenarios synchronized with climate mitigation regimes are explored—Business As Usual scenario (BAU), NDC scenario, 2 °C scenarios (early and late actions), and well below 2 °C scenario. The key results from the study include (a) coal-based power plants older than 30 years under NDC and older than 20 years for deeper CO2 mitigation will be stranded before their lifetime, (b) increase in renewables of up to 225–280 GW by 2050 will require battery storage with improved integrated smart grid infrastructure, (c) growth in nuclear to 27–32 GW by 2050 is dependent on nuclear supply availability, (d) gradual shift towards electrification in industry, building, and transport sectors, and (e) installation of CCS technologies in power and industry sectors. Cumulative investments of up to 6–8 trillion USD (approximately) will be required during 2015–2030 to implement the actions required to transform the current energy systems in India.


2006 ◽  
Vol 12 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Artur Rogoža ◽  
Kestutis Čiuprinskas ◽  
Giedrius Šiupšinskas

Energy systems should be analysed according to principles of sustainable development. The optimality of technical systems usually is evaluated by only technical and economical criteria. But the estimation of these criteria is not comprehensive enough in the case when system life cycle is much longer than the period of reliable economical prognosis. In this paper the criteria set of energy system evaluation and optimisation was expanded by energy and ecological standpoints and a new multiple criteria indicator (3E factor ‐ Energy, Economy, Ecology) was introduced. The application of this factor was demonstrated by two examples: optimisation of the district heating network pipeline replacement periodicity and optimisation of the thermal insulation of the single family house.


Sign in / Sign up

Export Citation Format

Share Document