scholarly journals Method of characteristics in spherical geometry applied to a Harang-discontinuity situation

1998 ◽  
Vol 16 (4) ◽  
pp. 413-424 ◽  
Author(s):  
O. Amm

Abstract. The method of characteristics for obtaining spatial distributions of ionospheric electrodynamic parameters from ground-based spatial observations of the ground magnetic disturbance and the ionospheric electric field is presented in spherical geometry. The method includes tools for separation of the external magnetic disturbance, its continuation to the ionosphere, and calculation of ionospheric equivalent currents. Based on these and the measured electric field distribution, the ionospheric Hall conductance is calculated as the primary output of the method. By estimating the Hall- to-Pedersen conductance ratio distribution, the remaining ionospheric electrodynamic parameters are inferred. The method does not assume ∇×E=0 to allow to study time-dependent situations. The application of this method to a Harang discontinuity (HD) situation on 27 October 1977, 17:39 UT, reveals the following: (1) The conductances at and north of the HD are clearly reduced as compared to the eastern electrojet region. (2) Plasma flow across the HD is observed, but almost all horizontal current is diverted into upward-flowing field-aligned currents (FACs) there. (3) The FACs connected to the Hall currents form a latitudinally aligned sheet with a magnitude peak between the electrically and magnetically defined HD, where break-up arcs are often observed. Their magnitude is larger than that of the more uniformly distributed FACs connected to the Pedersen currents. They also cause the southward shift of the magnetically defined HD with respect to the electrically defined one. (4) A tilt of the HD with respect to geomagnetic latitude as proposed by an earlier study on the same event, which used composite vector plot technique, and by statistical studies, is not observed in our single time-step analysis.Key words. Ionosphere · Electric fields and currents · Instruments and techniques · Magnetospheric physics · Current systems

1999 ◽  
Vol 17 (11) ◽  
pp. 1385-1396 ◽  
Author(s):  
O. Amm ◽  
A. Pajunpää ◽  
U. Brandström

Abstract. Using the method of characteristics to invert ground-based data of the ground magnetic field disturbance and of the ionospheric electric field, we obtain spatial distributions of ionospheric conductances, currents, and field-aligned currents (FACs) associated with a north-south auroral form that drifts westwards over northern Scandinavia around 2200 UT on December 2, 1977. This auroral form is one in a sequence of such north-south structures observed by all-sky cameras, and appears 14 min after the last of several breakups during that extremely disturbed night. Our analysis shows that the ionospheric Hall conductance reaches values above 200 S in the center of the form, and upward flowing FACs of up to 25 µA/m2 are concentrated near its westward and equatorward edge. The strong upward flowing FACs are fed by an area of more distributed, but still very strong downward-flowing FACs northeastward of the auroral form. In contrast to the conductances, the electric field is only slightly affected by the passage of the form. We point out similarities and differences of our observations and results to previously reported observations and models of 'auroral fingers', 'north-south aurora', and 'auroral streamers' which are suggested to be ionospheric manifestations of bursty bulk flows in the plasma sheet.Key words. Ionosphere (auroral ionosphere; electric fields and currents) · Magnetospheric physics (magnetosphere · ionosphere interactions)


2002 ◽  
Author(s):  
J. Kadaksham ◽  
P. Singh ◽  
N. Aubry

A numerical method based on the distributed Lagrange Multiplier method (DLM) [2,8] is developed for direct simulations of electrorheological (ER) liquids subjected to spatially varying electric fields. The flow inside particle boundaries is constrained to be rigid body motion by the distributed Lagrange multiplier method. The point-dipole approximation [6] is used to model the electrostatic forces acting on the polarized particles. The code is verified by performing a convergence study that shows that the results are independent of mesh and time step sizes. In a spatially nonuniform electric field the particles move to the regions where the magnitude of electric field is locally maximum when the particle permittivity is greater than that of the liquid. On the other hand, when the particle permittivity is smaller than that of the liquid the particles move to the regions of local minimum of electric field.


2000 ◽  
Vol 18 (2) ◽  
pp. 252-256 ◽  
Author(s):  
J. Hanumath Sastri ◽  
H. Luhr ◽  
H. Tachihara ◽  
T. -I. Kitamura ◽  
J. V. S. V. Rao

Abstract. Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25-35 min) in F region vertical plasma drift, Vz in the interval 0047-0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4-). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.Key words: Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere-magnetosphere interactions)


1998 ◽  
Vol 16 (10) ◽  
pp. 1200-1211 ◽  
Author(s):  
V. V. Klimenko ◽  
Yu. N. Korenkov ◽  
M. Förster

Abstract. Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20 m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5×10–7 A m–2 (region I) and 1.25×10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.Key words. Electric fields and currents · Ionosphere- atmosphere interactions · Modelling and forecasting


1976 ◽  
Vol 15 (2) ◽  
pp. 293-307 ◽  
Author(s):  
H. A. Davis ◽  
M. A. Mahdavi ◽  
R. H. Lovberg

We report on an experiment designed to study collisionless shock waves in an inverse pinch discharge using argon. A magnetic disturbance was generated which propagated ahead of the driving field at twice the piston speed. Measurements of the magnetic and electric field structures, electron density and temperature, as well as ion velocities revealed that the disturbance was produced by a beam of plasma moving through the ionized ambient plasma rather than by a true shock wave. Calculations of ion trajectories using measured electric fields demonstrated that the beam originated at small radii and early times, and was not the result of a steady specular reflexion from the piston field. It is concluded that the ions comprising this stream, which were collisionless relative to the ambient ions, did not couple to the background plasma even though a strong magnetic field was applied.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Sign in / Sign up

Export Citation Format

Share Document