scholarly journals Size Effect Analysis for the Characterization of Marcellus Shale Quasi-brittle Fracture Properties

2018 ◽  
Vol 52 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Weixin Li ◽  
Zhefei Jin ◽  
Gianluca Cusatis
2005 ◽  
Vol 287 ◽  
pp. 233-241 ◽  
Author(s):  
Paul F. Becher ◽  
Gayle S. Painter ◽  
Naoya Shibata ◽  
Hua Tay Lin ◽  
Mattison K. Ferber

Silicon nitride ceramics are finding uses in numerous engineering applications because of their tendency to form whisker-like microstructures that can overcome the inherent brittle nature of ceramics. Studies now establish the underlying microscopic and atomic-scale principles for engineering a tough, strong ceramic. The theoretical predictions are confirmed by macroscopic observations and atomic level characterization of preferential segregation at the interfaces between the grains and the continuous nanometer thick amorphous intergranular film (IGF). Two interrelated factors must be controlled for this to occur including the generation of the elongated reinforcing grains during sintering and debonding of the interfaces between the reinforcing grains and the matrix. The reinforcing grains can be controlled by (1) seeding with beta particles and (2) the chemistry of the additives, which also can influence the interfacial debonding conditions. In addition to modifying the morphology of the reinforcing grains, it now appears that the combination of preferential segregation and strong bonding of the additives (e.g., the rare earths, RE) to the prism planes can also result in sufficiently weakens the bond of the interface with the IGF to promote debonding. Thus atomic-scale engineering may allow us to gain further enhancements in fracture properties. This new knowledge will enable true atomic-level engineering to be joined with microscale tailoring to develop the advanced ceramics that will be required for more efficient engines, new electronic device architectures and composites.


2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


Sign in / Sign up

Export Citation Format

Share Document