Investigation of asphalt mixture strength statistics at low temperature based on size effect analysis

2014 ◽  
pp. 649-658 ◽  
2016 ◽  
pp. 1767-1776
Author(s):  
A. Cannone Falchetto ◽  
K.H. Moon ◽  
M.P. Wistuba

2016 ◽  
Vol 18 (sup1) ◽  
pp. 235-257 ◽  
Author(s):  
Augusto Cannone Falchetto ◽  
Michael P. Wistuba ◽  
Mihai O. Marasteanu

2012 ◽  
Vol 13 (sup1) ◽  
pp. 88-101 ◽  
Author(s):  
Eyoab Zegeye ◽  
Jia-Liang Le ◽  
Mugur Turos ◽  
Mihai Marasteanu

2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


2012 ◽  
Vol 20 (1) ◽  
pp. 35-40
Author(s):  
S. Štefunková

Characteristics of asphalt mixes with FT additiveThis article is focused on low-temperature asphalt mixture technologies using FT additive and RAP. The modern production and use of asphalt mixture technologies with reduced temperatures has many advantages. These advantages mainly help to save energy and the environment. Lower temperatures enable a reduction in energy consumption, a more acceptable working environment for workers, a reduction in negative environmental effects, such as greenhouse gas emissions, and an improvement in the workability of mixtures and a prolongation of their duration. This technology is currently becoming popular in many countries.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jinrong Wu ◽  
Rongbao Hong ◽  
Chenbin Gu

In order to improve the durability of asphalt pavement, low-temperature fracture performance of AC-13 asphalt mixture with different fiber types were studied by three-point bending fracture test under different temperatures and presawed positions. Test results show that the improvement effect of basalt fiber is obvious and stable. The improvement effect of polyester fiber is not obvious to resist I crack, and the resistance effect of I-II compound crack is obvious. Lignin fiber mixed in the asphalt mixture has no obvious effect on improving the crack resistance property under low temperature. Fiber cooperated with asphalt mixture can improve the ability of low-temperature fracture performance, while the improvement degree is effected by fiber type. Low-temperature fracture performance of asphalt mixture improves with the increase of temperature within a certain temperature range. The presawed position has significant effect on the low-temperature fracture performance of asphalt mixture. The larger the horizontal distance of the presawed position and center load is, the stronger the low-temperature fracture performance of asphalt mixture presents.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5277
Author(s):  
Shiqi Wang ◽  
Huanyun Zhou ◽  
Xianhua Chen ◽  
Minghui Gong ◽  
Jinxiang Hong ◽  
...  

Semi-flexible pavement (SFP) is widely used in recent years because of its good rutting resistance, but it is easy to crack under traffic loads. A large number of studies are aimed at improving its crack resistance. However, the understanding of its fatigue resistance and fatigue-cracking mechanism is limited. Therefore, the semi-circular bending (SCB) fatigue test is used to evaluate the fatigue resistance of the SFP mixture. SCB fatigue tests under different temperature values and stress ratio were used to characterize the fatigue life of the SFP mixture, and its laboratory fatigue prediction model was established. The distribution of various phases of the SFP mixture in the fracture surface was analyzed by digital image processing technology, and its fatigue cracking mechanism was analyzed. The results show that the SFP mixture has better fatigue resistance under low temperature and low stress ratio, while its fatigue resistance under other environmental and load conditions is worse than that of asphalt mixture. The main reason for the poor fatigue resistance of the SFP mixture is the poor deformation capacity and low strength of grouting materials. Furthermore, the performance difference between grouting material and the asphalt binder is large, which leads to the difference of fatigue cracking mechanism of the SFP mixture under different conditions. Under the fatigue load, the weak position of the SFP mixture at a low temperature is asphalt binder and its interface with other materials, while at medium and high temperatures, the weak position of the SFP mixture is inside the grouting material. The research provides a basis for the calculation of the service life of the SFP structure, provides a reference for the improvement direction of the SFP mixture composition and internal structure.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document