Comprehensive genomic analysis of the RNase T2 gene family in Rosaceae and expression analysis in Pyrus bretschneideri

2020 ◽  
Vol 306 (4) ◽  
Author(s):  
Xiaoxuan Zhu ◽  
Qionghou Li ◽  
Chao Tang ◽  
Xin Qiao ◽  
Kaijie Qi ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6628
Author(s):  
Xueqiang Su ◽  
Tiankai Meng ◽  
Yu Zhao ◽  
Guohui Li ◽  
Xi Cheng ◽  
...  

The INDETERMINATE DOMAIN (IDD) gene family encodes hybrid transcription factors with distinct zinc finger motifs and appears to be found in all higher plant genomes. IDD genes have been identified throughout the genomes of the model plants Arabidopsis thaliana and Oryza sativa, and the functions of many members of this gene family have been studied. However, few studies have investigated the IDD gene family in Rosaceae species (among these species, a genome-wide identification of the IDD gene family has only been completed in Malus domestica). This study focuses on a comparative genomic analysis of the IDD gene family in five Rosaceae species (Pyrus bretschneideri, Fragaria vesca, Prunus mume, Rubus occidentalis and Prunus avium). We identified a total of 68 IDD genes: 16 genes in Chinese white pear, 14 genes in F. vesca, 13 genes in Prunus mume, 14 genes in R. occidentalis and 11 genes in Prunus avium. The evolution of the IDD genes in these five Rosaceae species was revealed by constructing a phylogenetic tree, tracking gene duplication events, and performing a sliding window analysis and a conserved microsynteny analysis. The expression analysis of different organs showed that most of the pear IDD genes are found at a very high transcription level in fruits, flowers and buds. Based on our results with those obtained in previous research, we speculated that PbIDD2 and PbIDD8 might participate in flowering induction in pear. A temporal expression analysis showed that the expression patterns of PbIDD3 and PbIDD5 were completely opposite to the accumulation pattern of fruit lignin and the stone cell content. The results of the composite phylogenetic tree and expression pattern analysis indicated that PbIDD3 and PbIDD5 might be involved in the metabolism of lignin and secondary cell wall (SCW) formation. In summary, we provide basic information about the IDD genes in five Rosaceae species and thereby provide a theoretical basis for studying the function of these IDD genes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


2021 ◽  
Author(s):  
Dong-Liang Zhang ◽  
Yu Wang ◽  
Bing-Chen Jia ◽  
Xiao-Qin Tian ◽  
Jing Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document