Parallel Processing Strategies for Large SAR Image Data Sets in a Distributed Environment

Computing ◽  
1999 ◽  
Vol 62 (4) ◽  
pp. 277-291 ◽  
Author(s):  
A. Goller
2022 ◽  
Vol 14 (2) ◽  
pp. 398
Author(s):  
Pieter Kempeneers ◽  
Tomas Kliment ◽  
Luca Marletta ◽  
Pierre Soille

This paper is on the optimization of computing resources to process geospatial image data in a cloud computing infrastructure. Parallelization was tested by combining two different strategies: image tiling and multi-threading. The objective here was to get insight on the optimal use of available processing resources in order to minimize the processing time. Maximum speedup was obtained when combining tiling and multi-threading techniques. Both techniques are complementary, but a trade-off also exists. Speedup is improved with tiling, as parts of the image can run in parallel. But reading part of the image introduces an overhead and increases the relative part of the program that can only run in serial. This limits speedup that can be achieved via multi-threading. The optimal strategy of tiling and multi-threading that maximizes speedup depends on the scale of the application (global or local processing area), the implementation of the algorithm (processing libraries), and on the available computing resources (amount of memory and cores). A medium-sized virtual server that has been obtained from a cloud service provider has rather limited computing resources. Tiling will not only improve speedup but can be necessary to reduce the memory footprint. However, a tiling scheme with many small tiles increases overhead and can introduce extra latency due to queued tiles that are waiting to be processed. In a high-throughput computing cluster with hundreds of physical processing cores, more tiles can be processed in parallel, and the optimal strategy will be different. A quantitative assessment of the speedup was performed in this study, based on a number of experiments for different computing environments. The potential and limitations of parallel processing by tiling and multi-threading were hereby assessed. Experiments were based on an implementation that relies on an application programming interface (API) abstracting any platform-specific details, such as those related to data access.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199334
Author(s):  
Guangchao Zhang ◽  
Junrong Liu

With the urgent demand of consumers for diversified automobile modeling, simple, efficient, and intelligent automobile modeling analysis and modeling method is an urgent problem to be solved in current automobile modeling design. The purpose of this article is to analyze the modeling preference and trend of the current automobile market in time, which can assist the modeling design of new models of automobile main engine factories and strengthen their branding family. Intelligent rapid modeling shortens the current modeling design cycle, so that the product rapid iteration is to occupy an active position in the automotive market. In this article, aiming at the family analysis of automobile front face, the image database of automobile front face modeling analysis was created. The database included two data sets of vehicle signs and no vehicle signs, and the image data of vehicle front face modeling of most models of 22 domestic mainstream brands were collected. Then, this article adopts the image classification processing method in computer vision to conduct car brand classification training on the database. Based on ResNet-8 and other model architectures, it trains and classifies the intelligent vehicle brand classification database with and without vehicle label. Finally, based on the shape coefficient, a 3D wireframe model and a curved surface model are obtained. The experimental results show that the 3D curve model can be obtained based on a single image from any angle, which greatly shortens the modeling period by 92%.


Author(s):  
Daniel Overhoff ◽  
Peter Kohlmann ◽  
Alex Frydrychowicz ◽  
Sergios Gatidis ◽  
Christian Loewe ◽  
...  

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. Materials and Methods The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. Results First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. Conclusion It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. Key Points:  Citation Format


2003 ◽  
Vol 9 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Paul G. Kotula ◽  
Michael R. Keenan ◽  
Joseph R. Michael

Spectral imaging in the scanning electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) analyzer has the potential to be a powerful tool for chemical phase identification, but the large data sets have, in the past, proved too large to efficiently analyze. In the present work, we describe the application of a new automated, unbiased, multivariate statistical analysis technique to very large X-ray spectral image data sets. The method, based in part on principal components analysis, returns physically accurate (all positive) component spectra and images in a few minutes on a standard personal computer. The efficacy of the technique for microanalysis is illustrated by the analysis of complex multi-phase materials, particulates, a diffusion couple, and a single-pixel-detection problem.


Author(s):  
Carl Legleiter

The Snake River is a central component of Grand Teton National Park, and this dynamic fluvial system plays a key role in shaping the landscape and creating diverse aquatic and terrestrial habitat. The river’s complexity and propensity for change make effective characterization of this resource difficult, however, and conventional, ground-based methods are simply inadequate. Remote sensing provides an appealing alternative approach that could facilitate resource management while providing novel insight on the factors controlling channel form and behavior. In this study, we evaluate the potential to measure the morphology and dynamics of a large, complex river system such as the Snake using optical image data. Initially, we made use of existing, publicly available images and basic digital aerial photography acquired in August 2010. Analysis to date has focused on estimating flow depths from these data, and preliminary results indicate that remote bathymetric mapping is feasible but not highly accurate, with important constraints related to the limited radiometric resolution of these data sets. Additional, more sophisticated hyperspectral data are scheduled for collection in 2011, along with further field work.


Sign in / Sign up

Export Citation Format

Share Document