A post-processing method applied to simulated wind speeds in Romania

Author(s):  
Alexandra Craciun ◽  
Sabina Stefan
1990 ◽  
Vol 25 (12) ◽  
pp. 1355
Author(s):  
S. S. Winkler ◽  
Y. H. Kao ◽  
J. A. Sorenson

2021 ◽  
Author(s):  
Ida Marie Solbrekke ◽  
Asgeir Sorteberg ◽  
Hilde Haakenstad

Abstract. A new high-resolution (3 km) numerical mesoscale weather simulation spanning the period 2004–2018 is validated for offshore wind power purposes for the North Sea and Norwegian Sea. The NORwegian hindcast Archive (NORA3) was created by dynamical downscaling, forced with state-of-the-art hourly atmospheric reanalysis as boundary conditions. A validation of the simulated wind climatology has been carried out to determine the ability of NORA3 to act as a tool for planning future offshore wind power installations. Special emphasis is placed on evaluating offshore wind power-related metrics and the impact of simulated wind speed deviations on the estimated wind power and the related variability. The general conclusion of the validation is that the NORA3 data is rather well suited for wind power estimates, but gives slightly conservative estimates on the offshore wind metrics. Wind speeds are typically 5 % (0.5 ms−1) lower than observed wind speeds, giving an underestimation of offshore wind power of 10 %–20 % (equivalent to an underestimation of 3 percentage point in the capacity factor), for a selected turbine type and hub height. The model is biased towards lower wind power estimates because of overestimation of the frequency of low-speed wind events (< 10 ms−1) and underestimation of high-speed wind events (> 10 ms−1). The hourly wind speed and wind power variability are slightly underestimated in NORA3. However, the number of hours with zero power production (around 12 % of the time) is fairly well captured, while the duration of each of these events is slightly overestimated, leading to 25-year return values for zero-power duration being too high for four of the six sites. The model is relatively good at capturing spatial co-variability in hourly wind power production among the sites. However, the observed decorrelation length was estimated to be 432 km, whereas the model-based length was 19 % longer.


Abstract Climate trends have been observed over the recent decades in many parts of the world, but current global climate models (GCMs) for seasonal climate forecasting often fail to capture these trends. As a result, model forecasts may be biased above or below the trendline. In our previous research, we developed a trend-aware forecast post-processing method to overcome this problem. The method was demonstrated to be effective for embedding observed trends into seasonal temperature forecasts. In this study, we further develop the method for post-processing GCM seasonal precipitation forecasts. We introduce new formulation and evaluation features to cater for special characteristics of precipitation amounts, such as having a zero lower bound and highly positive skewness. We apply the improved method to calibrate ECMWF SEAS5 forecasts of seasonal precipitation for Australia. Our evaluation shows that the calibrated forecasts reproduce observed trends over the hindcast period of 36 years. In some regions where observed trends are statistically significant, forecast skill is greatly improved by embedding trends into the forecasts. In most regions, the calibrated forecasts outperform the raw forecasts in terms of bias, skill, and reliability. Wider applications of the new trend-aware post-processing method are expected to boost user confidence in seasonal precipitation forecasts.


Sign in / Sign up

Export Citation Format

Share Document