scholarly journals Sensitivity of a regional climate model on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia)

2011 ◽  
Vol 104 (1-2) ◽  
pp. 261-276 ◽  
Author(s):  
Mansour Almazroui
2017 ◽  
Vol 21 (2) ◽  
pp. 963-980 ◽  
Author(s):  
Vojtěch Svoboda ◽  
Martin Hanel ◽  
Petr Máca ◽  
Jan Kyselý

Abstract. Characteristics of rainfall events in an ensemble of 23 regional climate model (RCM) simulations are evaluated against observed data in the Czech Republic for the period 1981–2000. Individual rainfall events are identified using the concept of minimum inter-event time (MIT) and only heavy events (15 % of events with the largest event depths) during the warm season (May–September) are considered. Inasmuch as an RCM grid box represents a spatial average, the effects of areal averaging of rainfall data on characteristics of events are investigated using the observed data. Rainfall events from the RCM simulations are then compared to those from the at-site and area-average observations. Simulated number of heavy events and seasonal total precipitation due to heavy events are on average represented relatively well despite the higher spatial variation compared to observations. RCM-simulated event depths are comparable to the area-average observations, while event durations are overestimated and other characteristics related to rainfall intensity are significantly underestimated. The differences between RCM-simulated and at-site observed rainfall event characteristics are in general dominated by the biases of the climate models rather than the areal-averaging effect. Most of the rainfall event characteristics in the majority of the RCM simulations show a similar altitude-dependence pattern as in the observed data. The number of heavy events and seasonal total precipitation due to heavy events increase with altitude, and this dependence is captured better by the RCM simulations with higher spatial resolution.


2020 ◽  
Author(s):  
Hussain Alsarraf

<p>The purpose of this study is to examine the impact of climate change on the changes on summer surface temperatures between present (2000-2010) and future (2050-2060) over the Arabian Peninsula and Kuwait. In this study, the influence of climate change in the Arabian Peninsula and especially in Kuwait was investigated by high resolution (36, 12, and 4 km grid spacing) dynamic downscaling from the Community Climate System Model CCSM4 using the WRF Weather Research and Forecasting model. The downscaling results were first validated by comparing National Centers for Environmental Prediction NCEP model outputs with the observational data. The global climate change dynamic downscaling model was run using WRF regional climate model simulations (2000-2010) and future projections (2050-2060). The influence of climate change in the Arabian Peninsula can be projected from the differences between the two period’s model simulations. The regional model simulations of the average maximum surface temperature in summertime predicted an increase from 1◦C to 3 ◦C over the summertime in Kuwait by midcentury.</p><p><strong> </strong></p>


2016 ◽  
Vol 20 (5) ◽  
pp. 1765-1784 ◽  
Author(s):  
Subhadeep Halder ◽  
Subodh K. Saha ◽  
Paul A. Dirmeyer ◽  
Thomas N. Chase ◽  
Bhupendra Nath Goswami

Abstract. Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over central India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. It is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.


Sign in / Sign up

Export Citation Format

Share Document