Flood/drought event identification using an effective indicator based on the correlations between multiple time scales of the Standardized Precipitation Index and river discharge

2015 ◽  
Vol 128 (1-2) ◽  
pp. 159-168 ◽  
Author(s):  
Yuefeng Wang ◽  
Xingwei Chen ◽  
Ying Chen ◽  
Meibing Liu ◽  
Lu Gao
2014 ◽  
Vol 7 (4) ◽  
pp. 628
Author(s):  
Sérgio Rodrigo Quadros dos Santos ◽  
Celia Campos Braga ◽  
Ana Paula Paes dos Santos ◽  
Thamiris Luiza De Oliveira Brandão Campos ◽  
José Ivaldo Barbosa de Brito

O Índice de Precipitação Normalizada (SPI) é utilizado para quantificar o déficit e/ou excesso de precipitação nas múltiplas escalas de tempo. Ele tem se mostrado bastante útil no monitoramento da precipitação, principalmente pela sua flexibilidade, simplicidade de cálculo e interpretação. Desta forma este estudo tem como objetivo quantificar os eventos extremos secos e chuvosos na cidade de Belém-PA nas escalas de tempo de 3, 6 e 12 meses por meio do SPI. Para isto, utilizaram-se dados mensais de precipitação provenientes da estação meteorológicas de superfície do INMET no período de 1980-2011. Os resultados mostraram que a escala de tempo do SPI é inversamente proporcional à frequência dos eventos de chuva e seca. Os SPIs 3,6 e 12 mostraram mais eventos secos do que chuvosos para a cidade e a maioria dos eventos de chuva e seca estavam associados, principalmente, ao fenômeno ENOS. ABSTRACT The Standardized Precipitation Index (SPI) is used to quantify the deficit/ excess rainfall at multiple time scales. It has been very useful in monitoring of precipitation, mainly because of its flexibility, ease of calculation and interpretation. Thus this study aims to quantify the extreme wet and dry events in the city of Belém-PA in time scales of 3, 6 and 12 months by SPI. For this, we used monthly precipitation data from meteorological station at the INMET in the period 1980-2011. The results show that the timescale of the SPI is inversely proportional to the frequency of rain and dry events. The SPIs 3.6 and 12 showed driest events that rainy events to the city and most of the rainfall and drought events were associated, mainly, with the ENSO phenomenon. Key Words: Belem; SPI; Extreme Event.   


2008 ◽  
Vol 17 ◽  
pp. 23-29 ◽  
Author(s):  
A. Loukas ◽  
L. Vasiliades ◽  
J. Tzabiras

Abstract. This paper evaluates climate change effects on drought severity in the region of Thessaly, Greece. The Standardized Precipitation Index (SPI) has been used for estimation of drought severity. A geographical information system is applied for the division of Thessaly region to twelve hydrological homogeneous areas based on their geomorphology. Mean monthly precipitation values from 50 precipitation stations of Thessaly for the hydrological period October 1960–September 1990 were used for the estimation of mean areal precipitation. These precipitation timeseries have been used for the estimation of Standardized Precipitation Index (SPI) for multiple time scales (1-, 3-, 6-, 9-, and 12-months) for each sub-basin or area. The outputs of Global Circulation Model CGCM2 were applied for two socioeconomic scenarios, namely, SRES A2 and SRES B2 for the assessment of climate change impact on droughts. The GCM outputs were downscaled to the region of Thessaly using a statistical methodology to estimate precipitation time series for two future periods 2020–2050 and 2070–2100. A method has been proposed for the estimation of annual cumulative drought severity-time scale-frequency curves. These curves integrate the drought severity and frequency for various types of drought. The SPI timeseries and annual weighted cumulative drought severity were estimated and compared with the respective timeseries and values of the historical period 1960–1990. The results showed that the annual drought severity is increased for all hydrological areas and SPI time scales, with the socioeconomic scenario SRES A2 being the most extreme.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


2016 ◽  
Vol 17 (6) ◽  
pp. 1763-1779 ◽  
Author(s):  
Daniel J. McEvoy ◽  
Justin L. Huntington ◽  
Michael T. Hobbins ◽  
Andrew Wood ◽  
Charles Morton ◽  
...  

Abstract Precipitation, soil moisture, and air temperature are the most commonly used climate variables to monitor drought; however, other climatic factors such as solar radiation, wind speed, and humidity can be important drivers in the depletion of soil moisture and evolution and persistence of drought. This work assesses the Evaporative Demand Drought Index (EDDI) at multiple time scales for several hydroclimates as the second part of a two-part study. EDDI and individual evaporative demand components were examined as they relate to the dynamic evolution of flash drought over the central United States, characterization of hydrologic drought over the western United States, and comparison to commonly used drought metrics of the U.S. Drought Monitor (USDM), Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and the evaporative stress index (ESI). Two main advantages of EDDI over other drought indices are that it is independent of precipitation (similar to ESI) and it can be decomposed to identify the role individual evaporative drivers have on drought onset and persistence. At short time scales, spatial distributions and time series results illustrate that EDDI often indicates drought onset well in advance of the USDM, SPI, and SSI. Results illustrate the benefits of physically based evaporative demand estimates and demonstrate EDDI’s utility and effectiveness in an easy-to-implement agricultural early warning and long-term hydrologic drought–monitoring tool with potential applications in seasonal forecasting and fire-weather monitoring.


2014 ◽  
Vol 53 (10) ◽  
pp. 2310-2324 ◽  
Author(s):  
Guy Merlin Guenang ◽  
F. Mkankam Kamga

AbstractThe standardized precipitation index (SPI) is computed and analyzed using 55 years of precipitation data recorded in 24 observation stations in Cameroon along with University of East Anglia Climate Research Unit (CRU) spatialized data. Four statistical distribution functions (gamma, exponential, Weibull, and lognormal) are first fitted to data accumulated for various time scales, and the appropriate functions are selected on the basis of the Anderson–Darling goodness-of-fit statistic. For short time scales (up to 6 months) and for stations above 10°N, the gamma distribution is the most frequent choice; below this belt, the Weibull distribution predominates. For longer than 6-month time scales, there are no consistent patterns of fitted distributions. After calculating the SPI in the usual way, operational drought thresholds that are based on an objective method are determined at each station. These thresholds are useful in drought-response decision making. From SPI time series, episodes of severe and extreme droughts are identified at many stations during the study period. Moderate/severe drought occurrences are intra-annual in short time scales and interannual for long time scales (greater than 9 months), usually spanning many years. The SPI calculated from CRU gridded precipitation shows similar results, with some discrepancies at longer scales. Thus, the spatialized dataset can be used to extend such studies to a larger region—especially data-scarce areas.


2005 ◽  
Vol 2 (4) ◽  
pp. 1221-1246 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the higher (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to higher time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Author(s):  
L. Gudmundsson ◽  
S. I. Seneviratne

Abstract. Recent climate projections suggest pronounced changes in European drought frequency. In the north, increased precipitation volumes are likely to reduce drought occurrence, whereas more frequent droughts are expected for southern Europe. To assess whether this pattern of changes in drought frequency can already be identified for the past decades, we analyse trends in a recently developed pan-European drought climatology that is based on the Standardized Precipitation Index (SPI). The index is derived on multiple time scales, ranging from 1 to 36 months, which allows the assessment of trends in both short term and multi-year droughts. Trends are quantified using the Theil-Sen trend estimator combined with an extension of the Mann–Kendal test (p < 0.05) that accounts for serial correlation. Field significance is assessed on the basis of techniques that control the false discovery rate in a multiple testing setting. The trend analysis indicates that changes in drought frequency are more pronounced on time scales of one year and longer. The analysis also reveals that there has been a tendency for decreased drought frequency in northern Europe in the past decades, whereas droughts have likely become more frequent in selected southern regions.


2015 ◽  
Vol 12 (10) ◽  
pp. 10331-10377 ◽  
Author(s):  
M. Osuch ◽  
R. J. Romanowicz ◽  
D. Lawrence ◽  
W. K. Wong

Abstract. Possible future climate change effects on drought severity in Poland are estimated for six ENSEMBLE climate projections using the Standard Precipitation Index (SPI). The time series of precipitation represent six different RCM/GCM run under the A1B SRES scenario for the period 1971–2099. Monthly precipitation values were used to estimate the Standard Precipitation Index (SPI) for multiple time scales (1, 3, 6, 12 and 24 months) for a spatial resolution of 25 km × 25 km for the whole country. Trends in SPI were analysed using a Mann–Kendall test with Sen's slope estimator for each 25 km × 25 km grid cell for each RCM/GCM projection and timescale, and results obtained for uncorrected precipitation and bias corrected precipitation were compared. Bias correction was achieved using a distribution-based quantile mapping (QM) method in which the climate model precipitation series were adjusted relative to gridded E-OBS precipitation data for Poland. The results show that the spatial pattern of the trend depends on the climate model, the time scale considered and on the bias correction. The effect of change on the projected trend due to bias correction is small compared to the variability among climate models. We also summarise the mechanisms underlying the influence of bias correction on trends using a simple example of a linear bias correction procedure. In the case of precipitation the bias correction by QM does not change the direction of changes but can change the slope of trend. We also have noticed that the results for the same GCM, with differing RCMs, are characterized by similar pattern of changes, although this behaviour is not seen at all time scales and seasons.


2021 ◽  
Author(s):  
Qianfeng Wang ◽  
Rongrong Zhang ◽  
Yanping Qu ◽  
Jingyu Zeng ◽  
Xiaoping Wu ◽  
...  

Abstract. With the increasing shortage of water resources, drought has become one of the hot issues in the world. The standardized precipitation index (SPI) is one of the widely used drought assessment indicators because of its simple and effective calculation method, but it can only assess drought events more than one month. We developed a new multi-scale daily SPI dataset to make up for the shortcomings of the commonly used SPI and meet the needs of drought types at different time scales. Taking three typical stations in Henan, Yunnan and Fujian Province as examples, the drought events identified by SPI with different scales were consistent with the historical drought events recorded. Meanwhile, we took the 3-month scale SPI of soil and agricultural drought as an example, and analyzed the characteristics of drought events in 484 stations in Chinese mainland. The results showed that most of the drought events the mainland China did not increase significantly, and some parts of the northwestern Xinjiang and Northeast China showed signs of gradual relief. In short, our daily SPI data set is freely available to the public on the website https://doi.org/10.6084/m9.figshare.14135144, and can effectively capture drought events of different scales. It can also meet the needs of drought research in different fields such as meteorology, hydrology, agriculture, social economy, etc.


2009 ◽  
Vol 6 (5) ◽  
pp. 6455-6501 ◽  
Author(s):  
J.-P. Vidal ◽  
E. Martin ◽  
L. Franchistéguy ◽  
F. Habets ◽  
J.-M. Soubeyroux ◽  
...  

Abstract. Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc.) on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM) hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI) at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI) – and multiscale hydrological droughts, through the Standardized Flow Index (SFI). Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990) to short hot and dry periods (2003). This multilevel and multiscale drought climatology will serve as a basis for assessing the impacts of climate change on droughts in France.


Sign in / Sign up

Export Citation Format

Share Document