scholarly journals Pleomorphic archaeal viruses: the family Pleolipoviridae is expanding by seven new species

2020 ◽  
Vol 165 (11) ◽  
pp. 2723-2731 ◽  
Author(s):  
Tatiana A. Demina ◽  
Hanna M. Oksanen

AbstractEstablished in 2016, the family Pleolipoviridae comprises globally distributed archaeal viruses that produce pleomorphic particles. Pseudo-spherical enveloped virions of pleolipoviruses are membrane vesicles carrying a nucleic acid cargo. The cargo can be either a single-stranded or double-stranded DNA molecule, making this group the first family introduced in the 10th Report on Virus Taxonomy including both single-stranded and double-stranded DNA viruses. The length of the genomes is approximately 7–17 kilobase pairs, or kilonucleotides in the case of single-stranded molecules. The genomes are circular single-stranded DNA, circular double-stranded DNA, or linear double-stranded DNA molecules. Currently, eight virus species and seven proposed species are classified in three genera: Alphapleolipovirus (five species), Betapleolipovirus (nine species), and Gammapleolipovirus (one species). Here, we summarize the updated taxonomy of the family Pleolipoviridae to reflect recent advances in this field, with the focus on seven newly proposed species in the genus Betapleolipovirus: Betapleolipovirus HHPV3, HHPV4, HRPV9, HRPV10, HRPV11, HRPV12, and SNJ2.

Author(s):  
Lauren Ash ◽  
Rachel Marschang ◽  
Jolianne Rijks ◽  
Amanda Duffus

Ranaviruses are large double stranded DNA viruses from the family Iridoviridae. They are globally distributed and are currently known to affect fish, reptiles and amphibians. In North America, ranaviruses are also widely distributed, and cause frequent morbidity and mortality events in both wild and cultured populations. This is a synopsys of the North American content of the 4th International Symposium on Ranaviruses held in May 2017 in Budapest, Hungary.


2021 ◽  
Author(s):  
Ian Rambo ◽  
Valerie De Anda ◽  
Marguerite Langwig ◽  
Brett Baker

Abstract Asgard archaea are globally distributed, newly described microbes related to eukaryotes. Despite their importance, Asgard viruses have not been described. Here we characterize seven double-stranded DNA (dsDNA) viral genomes that infected Lokiarchaeota, Helarchaeota, and Thorarchaeota in deep-sea hydrothermal sediments. These viruses code for Caudovirales-like structural proteins, as well as proteins distinct from those described in archaeal viruses. They contain genes common in eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs), and appear to be capable of semi-autonomous genome replication, repair, epigenetic modifications, and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. Recovery of these Asgard viral genomes reveals they contain features of both prokaryotic and eukaryotic viruses, and provides insights into their roles in the ecology and evolution of their hosts.


2021 ◽  
pp. 1-8
Author(s):  
Tingting Yu ◽  
Thomas A. Neubauer ◽  
Adrienne Jochum

Abstract Burmese amber continues to provide unique insights into the terrestrial biota inhabiting tropical equatorial forests during mid-Cretaceous time. In contrast to the large amount and great diversity of terrestrial species retrieved so far, aquatic biota constitute rare inclusions. Here we describe the first freshwater snail ever preserved in amber. The new species Galba prima sp. nov. belongs in the family Lymnaeidae, today a diverse and near globally distributed family. Its inclusion in terrestrial amber is probably a result of the amphibious lifestyle typical of modern representatives of the genus. The finding of a freshwater snail on the Burma Terrane, back then an island situated at some 1500 km from mainland Asia, has implications for the dispersal mechanisms of Mesozoic lymnaeids. The Cenomanian species precedes the evolution of waterfowl, which are today considered a main vector for long-distance dispersal. In their absence, we discuss several hypotheses to explain the disjunct occurrence of the new species.


2021 ◽  
Author(s):  
Ian M Rambo ◽  
Valerie De Anda ◽  
Marguerite V Langwig ◽  
Brett J Baker

Asgard archaea are newly described microbes that are related to eukaryotes. Asgards are diverse and globally distributed, however, their viruses have not been described. Here we characterize seven viral genomes that infected Lokiarchaeota, Helarchaeota, and Thorarchaeota in deep-sea hydrothermal sediments. These viruses code for structural proteins similar to those in Caudovirales, as well as proteins distinct from those described in archaeal viruses. They also have genes common in eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs), and are predicted to be capable of semi-autonomous genome replication, repair, epigenetic modifications, and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. This first glimpse of Asgard viruses reveals they have features of both prokaryotic and eukaryotic viruses, and provides insights into their roles in the ecology and evolution of these globally distributed microbes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas W. Allain ◽  
Grant D. Stentiford ◽  
David Bass ◽  
Donald C. Behringer ◽  
Jamie Bojko

Abstract The Nudiviridae are a family of large double-stranded DNA viruses that infects the cells of the gut in invertebrates, including insects and crustaceans. The phylogenetic range of the family has recently been enhanced via the description of viruses infecting penaeid shrimp, crangonid shrimp, homarid lobsters and portunid crabs. Here we extend this by presenting the genome of another nudivirus infecting the amphipod Dikerogammarus haemobaphes. The virus, which infects cells of the host hepatopancreas, has a circular genome of 119,754 bp in length, and encodes a predicted 106 open reading frames. This novel virus encodes all the conserved nudiviral genes (sharing 57 gene homologues with other crustacean-infecting nudiviruses) but appears to lack the p6.9 gene. Phylogenetic analysis revealed that this virus branches before the other crustacean-infecting nudiviruses and shares low levels of gene/protein similarity to the Gammanudivirus genus. Comparison of gene synteny from known crustacean-infecting nudiviruses reveals conservation between Homarus gammarus nudivirus and Penaeus monodon nudivirus; however, three genomic rearrangements in this novel amphipod virus appear to break the gene synteny between this and the ones infecting lobsters and penaeid shrimp. We explore the evolutionary history and systematics of this novel virus, suggesting that it be included in the novel Epsilonnudivirus genus (Nudiviridae).


Author(s):  
Krzysztof Hinc ◽  
Monika Kabała ◽  
Adam Iwanicki ◽  
Gajane Martirosian ◽  
Alessandro Negri ◽  
...  

AbstractA temperate siphovirus, phiCDKH01, was obtained from a clinical isolate of Clostridioides difficile. The phage genome is a 45,089-bp linear double-stranded DNA molecule with an average G+C content of 28.7%. It shows low similarity to known phage genomes, except for phiCD24-1. Genomic and phylogenetic analysis revealed that phiCDKH01 is a newly discovered phage. Sixty-six putative ORFs were predicted in the genome, 37 of which code for proteins with predicted functions. The phiCDKH01 prophage was localized in the host genome. The results of this study increase our knowledge about the genetic diversity of tailed phages.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Derek Gatherer ◽  
Daniel P. Depledge ◽  
Carol A. Hartley ◽  
Moriah L. Szpara ◽  
Paola K. Vaz ◽  
...  

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125–241 kbp contain 70–170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


2020 ◽  
Vol 101 (6) ◽  
pp. 571-572 ◽  
Author(s):  
Lars Magnius ◽  
William S. Mason ◽  
John Taylor ◽  
Michael Kann ◽  
Dieter Glebe ◽  
...  

The family Hepadnaviridae comprises small enveloped viruses with a partially double-stranded DNA genome of 3.0–3.4 kb. All family members express three sets of proteins (preC/C, polymerase and preS/S) and replication involves reverse transcription within nucleocapsids in the cytoplasm of hepatocytes. Hepadnaviruses are hepatotropic and infections may be transient or persistent. There are five genera: Parahepadnavirus, Metahepadnavirus, Herpetohepadnavirus, Avihepadnavirus and Orthohepadnavirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hepadnaviridae, which is available at ictv.global/report/hepadnaviridae.


2021 ◽  
Author(s):  
Krzysztof Hinc ◽  
Monika Kabała ◽  
Adam Iwanicki ◽  
Gajane Martirosian ◽  
Alessandro Negri ◽  
...  

Abstract A new temperate phiCDKH01 siphophage was obtained from clinical isolate of Clostridioides difficile. The phage genome is a 45,089 bp linear double-stranded DNA molecule with an average G + C content of 28.7%. It shows low similarity to known phage genomes except for phiCD24-1. Genomic and phylogenetic analysis revealed that phiCDKH01 is a novel phage. 66 putative ORFs were predicted in the genome, 37 of which code for proteins with predicted functions. The phiCDKH01 prophage has been localized in the host genome. Results of this study increases genetic diversity of known tailed phages.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1092 ◽  
Author(s):  
Ashleigh F. Porter ◽  
Mang Shi ◽  
John-Sebastian Eden ◽  
Yong-Zhen Zhang ◽  
Edward C. Holmes

DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date. By incorporating the sequence of a “blank” experimental control we also highlight the importance of reagent contamination in metagenomic studies. In sum, this work expands our knowledge of the diversity and evolution of DNA viruses and illustrates the utility of meta-transcriptomic data in identifying organisms with DNA genomes.


Sign in / Sign up

Export Citation Format

Share Document