Breakdown of orthopyroxene contributing to melt pockets in mantle peridotite xenoliths from the Western Qinling, central China: constraints from in situ LA-ICP-MS mineral analyses

2011 ◽  
Vol 104 (3-4) ◽  
pp. 225-247 ◽  
Author(s):  
Ben-Xun Su ◽  
Hong-Fu Zhang ◽  
Yue-Heng Yang ◽  
Patrick Asamoah Sakyi ◽  
Ji-Feng Ying ◽  
...  
2019 ◽  
Vol 7 (2) ◽  
pp. 85
Author(s):  
Njankouo Ndassa Zénab Nouraan ◽  
Nkouandou Oumarou Faarouk ◽  
Bardintzeff Jacques-Marie ◽  
Ganwa Alexandre Alembert ◽  
Fagny Mefire Aminatou ◽  
...  

Small volcanoes and flows of Cainozoic basaltic lavas, containing numerous mantle peridotite xenoliths, outcrop at northern Ngaoundéré in Adamawa plateau. They are composed of arena of decimeter to meter in size of bowls and blocs of dark matrix, showing crystals of olivine, clinopyroxene and oxides. All lavas present microlitic porphyritic texture with euhedral to subhedral crystals of the same phases drowned in the matrix of the same minerals plus plagioclase microlites.Microprobe analyses show that olivine phenocrysts are relatively Fo-rich (80.9-84.3 %) compared to microphenocrysts and microcrysts (Fo71.1-75.9 %). Olivine xenocrysts are highly magnesian (83.9-89.8 %). Clinopyroxene are diopside and augite. Oxides crystals are Ti-magnetite and plagioclase are labradorite and bytownite.ICP-AES and ICP-MS whole rocks analyses show that the host peridotite basaltic lavas of northern Ngaoundéré are undersaturated basanites of typical alkaline lava series. They seem not contaminated by crustal materials. They are the results of low partial melting rate of the garnet mantle source located at more than 80 km depth. The eruptions of northern Ngaoundéré lavas have been facilitated by Pan African cracks and they have sampled the subcontinental lithospheric mantle as xenoliths at different pressures and depths on their way to the surface.  


2010 ◽  
Vol 21 (5) ◽  
pp. 641-668 ◽  
Author(s):  
Benxun Su ◽  
Hongfu Zhang ◽  
Patrick Asamoah Sakyi ◽  
Kezhang Qin ◽  
Pingping Liu ◽  
...  

2021 ◽  
Vol 176 (5) ◽  
Author(s):  
Z. J. Sudholz ◽  
G. M. Yaxley ◽  
A. L. Jaques ◽  
J. Chen

AbstractThe temperature-dependent exchange of Ni and Mg between garnet and olivine in mantle peridotite is an important geothermometer for determining temperature variations in the upper mantle and the diamond potential of kimberlites. Existing calibrations of the Ni-in-garnet geothermometer show considerable differences in estimated temperature above and below 1100 °C hindering its confident application. In this study, we present the results from new synthesis experiments conducted on a piston cylinder apparatus at 2.25–4.5 GPa and 1100–1325 °C. Our experimental approach was to equilibrate a Ni-free Cr-pyrope-rich garnet starting mixture made from sintered oxides with natural olivine capsules (Niolv ≅ 3000 ppm) to produce an experimental charge comprised entirely of peridotitic pyrope garnet with trace abundances of Ni (10–100 s of ppm). Experimental runs products were analysed by wave-length dispersive electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We use the partition coefficient for the distribution of Ni between our garnet experimental charge and the olivine capsule $$\left( {{\text{lnD}}_{{{\text{grt}}/{\text{olv}}}}^{{{\text{Ni}}}} ; \frac{{{\text{Ni}}_{{{\text{grt}}}} }}{{{\text{Ni}}_{{{\text{olv}}}} }}} \right)$$ lnD grt / olv Ni ; Ni grt Ni olv , the Ca mole fraction in garnet ($${\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Ca}};$$ X grt Ca ; Ca/(Ca + Fe + Mg)), and the Cr mole fraction in garnet ($${\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Cr}};$$ X grt Cr ; Cr/(Cr + Al)) to develop a new formulation of the Ni-in-garnet geothermometer that performs more reliably on experimental and natural datasets than existing calibrations. Our updated Ni-in-garnet geothermometer is defined here as:$$T \left(^\circ{\rm C} \right)=\frac{-8254.568}{\left(\left( {\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Ca}} \times 3.023 \right)+\left({\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Cr}} \times 2.307 \right)+\left({\mathrm{lnD}}_{\frac{\mathrm{grt}}{\mathrm{olv}}}^{\mathrm{Ni}} - 2.639 \right)\right)}-273\pm 55$$ T ∘ C = - 8254.568 X grt Ca × 3.023 + X grt Cr × 2.307 + lnD grt olv Ni - 2.639 - 273 ± 55 where $${\mathrm{D}}_{\mathrm{grt}/\mathrm{olv}}^{\mathrm{Ni}}= \frac{{\mathrm{Ni}}_{\mathrm{grt}}}{{\mathrm{Ni}}_{\mathrm{olv}}},$$ D grt / olv Ni = Ni grt Ni olv , Ni is in ppm, $${\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Ca}}$$ X grt Ca  = Ca/(Ca + Fe + Mg) in garnet, and $${\mathrm{X}}_{\mathrm{grt}}^{\mathrm{Cr}}$$ X grt Cr = Cr/(Cr + Al) in garnet. Our updated Ni-in-garnet geothermometer can be applied to garnet peridotite xenoliths or monomineralic garnet xenocrysts derived from disaggregation of a peridotite source. Our calibration can be used as a single grain geothermometer by assuming an average mantle olivine Ni concentration of 3000 ppm. To maximise the reliability of temperature estimates made from our Ni-in-garnet geothermometer, we provide users with a data quality protocol method which can be applied to all garnet EPMA and LA-ICP-MS analyses prior to Ni-in-garnet geothermometry. The temperature uncertainty of our updated calibration has been rigorously propagated by incorporating all analytical and experimental uncertainties. We have found that our Ni-in-garnet temperature estimates have a maximum associated uncertainty of ± 55 °C. The improved performance of our updated calibration is demonstrated through its application to previously published experimental datasets and on natural, well-characterised garnet peridotite xenoliths from a variety of published datasets, including the diamondiferous Diavik and Ekati kimberlite pipes from the Lac de Gras kimberlite field, Canada. Our new calibration better aligns temperature estimates using the Ni-in-garnet geothermometer with those estimated by the widely used (Nimis and Taylor, Contrib Mineral Petrol 139:541–554, 2000) enstatite-in-clinopyroxene geothermometer, and confirms an improvement in performance of the new calibration relative to existing versions of the Ni-in-garnet geothermometer.


Author(s):  
Lei Xu ◽  
Wen Zhang ◽  
Tao Luo ◽  
Jin-Hui Yang ◽  
Zhaochu Hu

High precise and accurate measurements of Fe isotope ratios for fourteen reference materials from the USGS, MPI-DING and CGSG were successfully carried out using a developed analytical technique by fs...


Author(s):  
Andreas Benjamin Kaufmann ◽  
Marina Lazarov ◽  
Stefan Kiefer ◽  
Juraj Majzlan ◽  
Stefan Weyer

Here we present a method for in-situ determination of stable antimony (Sb) isotope compositions by ultraviolet (UV)-femtosecond-laser-ablation-multi-collector-ICP-MS (fs-LA-MC-ICP-MS). Metallic antimony and a number of Sb minerals (stibnite, senarmontite, chalcostibite, tetrahedrite,...


Lithos ◽  
2015 ◽  
Vol 232 ◽  
pp. 111-123 ◽  
Author(s):  
Jianggu Lu ◽  
Jianping Zheng ◽  
William L. Griffin ◽  
Suzanne Y. O'Reilly ◽  
Norman J. Pearson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammadali Faraji ◽  
Andrea Borsato ◽  
Silvia Frisia ◽  
John C. Hellstrom ◽  
Andrew Lorrey ◽  
...  

AbstractTropical Pacific stalagmites are commonly affected by dating uncertainties because of their low U concentration and/or elevated initial 230Th content. This poses problems in establishing reliable trends and periodicities for droughts and pluvial episodes in a region vulnerable to climate change. Here we constrain the chronology of a Cook Islands stalagmite using synchrotron µXRF two-dimensional mapping of Sr concentrations coupled with growth laminae optical imaging constrained by in situ monitoring. Unidimensional LA-ICP-MS-generated Mg, Sr, Ba and Na variability series were anchored to the 2D Sr and optical maps. The annual hydrological significance of Mg, Sr, Ba and Na was tested by principal component analysis, which revealed that Mg and Na are related to dry-season, wind-transported marine aerosols, similar to the host-rock derived Sr and Ba signatures. Trace element annual banding was then used to generate a calendar-year master chronology with a dating uncertainty maximum of ± 15 years over 336 years. Our approach demonstrates that accurate chronologies and coupled hydroclimate proxies can be obtained from speleothems formed in tropical settings where low seasonality and problematic U–Th dating would discourage the use of high-resolution climate proxies datasets.


Sign in / Sign up

Export Citation Format

Share Document