scholarly journals Pitfalls in Sample Preparation of Metalloproteins for Low-Temperature EPR: The Example of Alkaline Myoglobin

Author(s):  
Ilenia Serra ◽  
Inés García Rubio ◽  
Sabine Van Doorslaer

AbstractDue to fast relaxation processes of transition metal ions, electron paramagnetic resonance (EPR) spectroscopy of metalloproteins needs to be performed at cryogenic temperatures. To avoid damaging the biological system upon freezing, a cryoprotectant is generally added to the sample as a glassing agent. Even though cryoprotectants are expected to be inert substances, evidences in literature show their non-innocent role in altering the shape of EPR spectra of proteins and biological objects in general. In this work we conduct a systematic study on the impact of several experimental factors—such as buffer composition, choice of cryoprotectant, pH and temperature—on the EPR spectrum of myoglobin, taken as a reference system for being a well-characterized heme-containing protein. We focus on high-pH buffers to induce and investigate the alkaline transition of ferric myoglobin (pKa ~ 8.9). A combined approach of continuous-wave EPR and UV–visible absorption spectroscopy shows that using particular pairs of buffers and cryoprotectants determines a considerable pH variation in the sample and that this effect is enhanced at cryogenic temperature. In addition, phase memory times were measured to evaluate the efficiency of different cryoprotectants and compared with spectral linewidths in continuous-wave EPR. Our findings suggest that among the selected cryoprotectants ethylene glycol is rather effective, even more than the widely used glycerol, without having unwanted effects.

2016 ◽  
Vol 72 (7) ◽  
pp. 555-560 ◽  
Author(s):  
Ying-Lian Qin ◽  
Bin-Wu Yang ◽  
Gao-Feng Wang ◽  
Hong Sun

Square-planar complexes are commonly formed by transition metal ions having ad8electron configuration. Planar cyanometallate anions have been used extensively as design elements in supramolecular coordination systems. In particular, square-planar tetracyanometallate(II) ions,i.e.[M(CN)4]2−(MII= Ni, Pd or Pt), are used as good building blocks for bimetallic Hofmann-type assemblies and their analogues. Square-planar tetracyanonickellate(II) complexes have been extensively developed withN-donor groups as additional co-ligands, but studies of these systems usingO-donor ligands are scarce. A new cyanide-bridged CuII–NiIIheterometallic compound, poly[[diaquatetra-μ2-cyanido-κ8C:N-nickel(II)copper(II)] monohydrate], {[CuIINiII(CN)4(H2O)2]·H2O}n, has been synthesized and characterized by X-ray single-crystal diffraction analyses, vibrational spectroscopy (FT–IR), thermal analysis, electron paramagnetic resonance (EPR) and magnetic moment measurements. The structural analysis revealed that it has a two-dimensional grid-like structure built up of cationic [Cu(H2O)2]2+and anionic [Ni(CN)4]2−units connected through bridging cyanide ligands. The overall three-dimensional supramolecular network is expanded by a combination of interlayer O—H...N and intralayer O—H...O hydrogen-bond interactions. The first decomposition reactions take place at 335 K under a static air atmosphere, which illustrates the existence of guest water molecules in the interlayer spaces. The electron paramagnetic resonance (EPR) spectrum confirms that the CuIIcation has an axial coordination symmetry and that the unpaired electrons occupy thed_{{{{x}^2}-y^2} orbital. In addition, magnetic investigations showed that antiferromagnetic interactions exist in the CuIIatoms through the diamagnetic [Ni(CN)4]2−ion.


1999 ◽  
Vol 46 (4) ◽  
pp. 889-899 ◽  
Author(s):  
J Pyka ◽  
A Osyczka ◽  
B Turyna ◽  
W Blicharski ◽  
W Froncisz

A cysteine-specific methanethiosulfonate spin label was introduced into yeast iso-1-cytochrome c at three different positions. The modified forms of cytochrome c included: the wild-type protein labeled at naturally occurring C102, and two mutated proteins, S47C and L85C, labeled at positions 47 and 85, respectively (both S47C and L85C derived from the protein in which C102 had been replaced by threonine). All three spin-labeled protein derivatives were characterized using electron paramagnetic resonance (EPR) techniques. The continuous wave (CW) EPR spectrum of spin label attached to L85C differed from those recorded for spin label attached to C102 or S47C, indicating that spin label at position 85 was more immobilized and exhibited more complex tumbling than spin label at two other positions. The temperature dependence of the CW EPR spectra and CW EPR power saturation revealed further differences of spin-labeled L85C. The results were discussed in terms of application of the site-directed spin labeling technique in probing the local dynamic structure of iso-1-cytochrome c.


2005 ◽  
Vol 900 ◽  
Author(s):  
Chrispin B. O. Kowenje ◽  
Barry R. Jones ◽  
Charles W. Kanyi

ABSTRACTThe interpretation of the continuous wave electron paramagnetic resonance (CW-EPR) spectra of Cu2+ exchanged in Faujasite zeolite is not straightforward. Recent literature points to the role of both Cu2+ zeolite sites and Cu2+ relationship to lattice Al in determining the parameters of Cu2+ spin Hamiltonian. Our work shows that at low concentration, Cu2+ EPR signals show negligible spin-spin interactions. At higher Cu (II) concentrations, a third CW-EPR spectrum that has contributions from both the CW-EPR and the spin-spin interactions, appears.


2003 ◽  
Vol 792 ◽  
Author(s):  
V. Aubin ◽  
D. Caurant ◽  
D. Gourier ◽  
N. Baffier ◽  
S. Esnouf ◽  
...  

ABSTRACTProgress on separating the long-lived fission products from the high level radioactive liquid waste (HLW) has led to the development of specific host matrices, notably for the immobilization of cesium. Hollandite (nominally BaAl2Ti6O16), one of the main phases constituting Synroc, receives renewed interest as specific Cs-host wasteform. The radioactive cesium isotopes consist of short-lived Cs and Cs of high activities and Cs with long lifetime, all decaying according to Cs+→Ba2++e- (β) + γ. Therefore, Cs-host forms must be both heat and (β,γ)-radiation resistant. The purpose of this study is to estimate the stability of single phase hollandite under external β and γ radiation, simulating the decay of Cs. A hollandite ceramic of simple composition (Ba1.16Al2.32Ti5.68O16) was essentially irradiated by 1 and 2.5 MeV electrons with different fluences to simulate the β particles emitted by cesium. The generation of point defects was then followed by Electron Paramagnetic Resonance (EPR). All these electron irradiations generated defects of the same nature (oxygen centers and Ti3+ ions) but in different proportions varying with electron energy and fluence. The annealing of irradiated samples lead to the disappearance of the latter defects but gave rise to two other types of defects (aggregates of light elements and titanyl ions). It is necessary to heat at relatively high temperature (T=800°C) to recover an EPR spectrum similar to that of the pristine material. The stability of hollandite phase under radioactive cesium irradiation during the waste storage is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Schaner ◽  
Ly-Binh-An Tran ◽  
Bassem I. Zaki ◽  
Harold M. Swartz ◽  
Eugene Demidenko ◽  
...  

AbstractDuring a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.


2004 ◽  
Vol 858 ◽  
Author(s):  
Jian Chen ◽  
Rajagopal Ramasubramaniam ◽  
Haiying Liu

ABSTRACTThe understanding of the conformational interaction between conjugated polymers and carbon nanotubes in solution is essential to develop the applications of carbon nanotubes, particularly conjugated polymer-carbon nanotube hybrid materials. The visible absorption spectroscopic study shows that curved carbon nanotube surfaces can induce the planarization of individual conjugated polymers such as poly(p-phenyleneethynylene)s and poly(3-alkylthiophene)s in solution. The impact of nanotube surface quality on the interaction between carbon nanotubes and conjugated polymers is investigated.


Author(s):  
Aidin R. Balo ◽  
Lizhi Tao ◽  
R. David Britt

AbstractOwing to their importance, diversity and abundance of generated paramagnetic species, radical S-adenosylmethionine (rSAM) enzymes have become popular targets for electron paramagnetic resonance (EPR) spectroscopic studies. In contrast to prototypic single-domain and thus single-[4Fe–4S]-containing rSAM enzymes, there is a large subfamily of rSAM enzymes with multiple domains and one or two additional iron–sulfur cluster(s) called the SPASM/twitch domain-containing rSAM enzymes. EPR spectroscopy is a powerful tool that allows for the observation of the iron–sulfur clusters as well as potentially trappable paramagnetic reaction intermediates. Here, we review continuous-wave and pulse EPR spectroscopic studies of SPASM/twitch domain-containing rSAM enzymes. Among these enzymes, we will review in greater depth four well-studied enzymes, BtrN, MoaA, PqqE, and SuiB. Towards establishing a functional consensus of the additional architecture in these enzymes, we describe the commonalities between these enzymes as observed by EPR spectroscopy.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3829
Author(s):  
Ekaterina M. Zubanova ◽  
Sergei V. Kostjuk ◽  
Peter S. Timashev ◽  
Yury A. Rochev ◽  
Alexander I. Kokorin ◽  
...  

Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the “quencher” for fast-moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra simulations confirm the formation of molten globules at the first step with further collapsing and water molecules coming out of the globule, making it denser.


Sign in / Sign up

Export Citation Format

Share Document