Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice

2009 ◽  
Vol 28 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Yasuyoshi Kobayashi ◽  
Toru Hiraga ◽  
Akimi Ueda ◽  
Liyang Wang ◽  
Michiyo Matsumoto-Nakano ◽  
...  
2010 ◽  
Vol 37 (8) ◽  
pp. 3813-3818 ◽  
Author(s):  
Gui-xing Jiang ◽  
Xiang-yu Zhong ◽  
Yun-fu Cui ◽  
Wei Liu ◽  
Sheng Tai ◽  
...  

2006 ◽  
Vol 17 (8) ◽  
pp. 3446-3455 ◽  
Author(s):  
Maoxian Deng ◽  
Wei-Li Chen ◽  
Atsushi Takatori ◽  
Zhimin Peng ◽  
Lin Zhang ◽  
...  

The mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1) mediates activin B signals required for eyelid epithelium morphogenesis during mouse fetal development. The present study investigates the role of MEKK1 in epithelial wound healing, another activin-regulated biological process. In a skin wound model, injury markedly stimulates MEKK1 expression and activity, which are in turn required for the expression of genes involved in extracellular matrix (ECM) homeostasis. MEKK1 ablation or down-regulation by interfering RNA significantly delays skin wound closure and impairs activation of Jun NH2-terminal kinases, induction of plasminogen activator inhibitor (PAI)-1, and restoration of cell–cell junctions of the wounded epidermis. Conversely, expression of wild-type MEKK1 accelerates reepithelialization of full-thickness skin and corneal debridement wounds by mechanisms involving epithelial cell migration, a cell function that is partially abolished by neutralizing antibodies for PAI-1 and metalloproteinase III. Our data suggest that MEKK1 transmits wound signals, leading to the transcriptional activation of genes involved in ECM homeostasis, epithelial cell migration, and wound reepithelialization.


2005 ◽  
Vol 288 (2) ◽  
pp. G316-G326 ◽  
Author(s):  
Jennifer M. Smith ◽  
Priscilla A. Johanesen ◽  
Michael K. Wendt ◽  
David G. Binion ◽  
Michael B. Dwinell

Intestinal epithelial cell migration plays a key role in gastrointestinal mucosal barrier formation, enterocyte development, differentiation, turnover, wound healing, and adenocarcinoma metastasis. Chemokines, through engagement of their corresponding receptors, are potent mediators of directed cell migration and are critical in the establishment and regulation of innate and adaptive immune responses. The aim of this study was to define the role for the chemokine CXCL12 and its sole cognate receptor CXCR4 in regulating intestinal epithelial cell migration and to determine its impact on barrier integrity. CXCL12 stimulated the dose-dependent chemotactic migration of human T84 colonic epithelial cells. Epithelial cell migration was inhibited by CXCR4 neutralizing antibody, pertussis toxin, LY-294002, and PD-98059, thereby implicating Gαi, phosphatidylinositol 3-kinase (PI3-kinase), and the ERK1/2 MAP kinase pathways in CXCR4-specific signaling. CXCL12 was also shown to increase barrier integrity, as defined by transepithelial resistance and paracellular flux across differentiating T84 monolayers. To determine whether CXCL12 regulated epithelial restitution, we used the normal nontransformed intestinal epithelial cell-6 (IEC-6) wound healing model. By using RT-PCR, immunoblot analysis, and immunofluorescence microscopy, we first showed expression of both CXCR4 and its ligand by IEC-6 cells. We then demonstrated that CXCL12 activated comparable signaling mechanisms to stimulate epithelial migration in the absence of proliferation in wounded IEC-6 monolayers. Taken together, these data indicate that CXCL12 signaling via CXCR4 directs intestinal epithelial cell migration, barrier maturation, and restitution, consistent with an important mechanistic role for these molecules in mucosal barrier integrity and innate host defense.


2012 ◽  
Vol 529-530 ◽  
pp. 407-412
Author(s):  
Ikiru Atsuta ◽  
Yasunori Ayukawa ◽  
Takayoshi Yamaza ◽  
Akihiro Furuhashi ◽  
Ryosuke Kondo ◽  
...  

Integrin, a component of the hemidesmosome, plays a role for epithelial cell migration and adhesion. This study investigated the process of peri-implant epithelium (PIE) formation after implantation, and compared it to the process of oral mucosa healing after tooth extraction. At the healing site of extraction socket without implant, the original junctional epithelium (JE) had disappeared at week 2, and the oral epithelium (OE) with integrin-α3 positive basal cells extending from the sides of the wound, then joined in the middle of the extraction socket. On the other hand in implant group, newly formed epithelium with integrin-α3 positive cells from the OE extended apically 1 week after implantation. After 3 weeks, basal cells of the new epithelium consisted of those with integrin-α3 positive but β4 negative. Finally, after 4 weeks, integrin-β4 was expressed at the implant-PIE interface. These findings suggest that integrin α3β1 plays a role in cell migration during PIE formation from OE. Furthermore, after the completion of PIE constitution, integrin α6β4 contributes to the attachment to titanium.


2020 ◽  
Vol 117 (17) ◽  
pp. 9477-9482 ◽  
Author(s):  
Miguel Quiros ◽  
Darius Feier ◽  
Dorothee Birkl ◽  
Rachit Agarwal ◽  
Dennis W. Zhou ◽  
...  

Resolution of intestinal inflammation and wound repair are active processes that mediate epithelial healing at mucosal surfaces. Lipid molecules referred to as specialized proresolving mediators (SPMs) play an important role in the restorative response. Resolvin E1 (RvE1), a SPM derived from omega-3 fatty acids, has been reported to dampen intestinal inflammation by promoting anti-inflammatory responses including increased neutrophil spherocytosis and macrophage production of IL-10. Despite these observations, a role for RvE1 in regulating intestinal epithelial cell migration and proliferation during mucosal wound repair has not been explored. Using an endoscopic biopsy-based wound healing model, we report that RvE1 is locally produced in response to intestinal mucosal injury. Exposure of intestinal epithelial cells to RvE1 promoted wound repair by increasing cellular proliferation and migration through activation of signaling pathways including CREB, mTOR, and Src-FAK. Additionally, RvE1-triggered activation of the small GTPase Rac1 led to increased intracellular reactive oxygen species (ROS) production, cell–matrix adhesion, and cellular protrusions at the leading edge of migrating cells. Furthermore, in situ administration of RvE1-encapsulated synthetic targeted polymeric nanoparticles into intestinal wounds promoted mucosal repair. Together, these findings demonstrate that RvE1 functions as a prorepair lipid mediator by increasing intestinal epithelial cell migration and proliferation, and highlight potential therapeutic applications for this SPM to promote mucosal healing in the intestine.


Sign in / Sign up

Export Citation Format

Share Document