Investigating the anticancer properties of the two new platinum complexes with iso- and tert-pentylglycine by the DFT, molecular docking, and ADMET assessment and experimental confirmations

2021 ◽  
Vol 26 (2-3) ◽  
pp. 283-298
Author(s):  
Nadali Ramezani ◽  
Mahboube Eslami Moghadam ◽  
Mahdi Behzad
Author(s):  
Mohammed N. Jasim ◽  
Abdulqader M. Abdulqader ◽  
Mohammed A. Awad

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zao-Hui Li ◽  
Dan Yu ◽  
Nan-Nan Huang ◽  
Jun-Kai Wu ◽  
Xiao-Wei Du ◽  
...  

AbstractPanax ginseng is one of the oldest and most generally prescribed herbs in Eastern traditional medicine to treat diseases. Several studies had documented that ginseng leaves have anti-oxidative, anti-inflammatory, and anticancer properties similar to those of ginseng root. The aim of this research was to forecast of the molecular mechanism of ginseng leaves on lung cancer by molecular docking and network pharmacology so as to decipher ginseng leaves' entire mechanism. The compounds associated with ginseng leaves were searched by TCMSP. TCMSP and Swiss Target Prediction databases were used to sort out the potential targets of the main chemical components. Targets were collected from OMIM, PharmGKB, TTD, DrugBank and GeneCards which related to immunity and lung cancer. Ginseng leaves exert its lung cancer suppressive function by regulating the several signaling proteins, such as JUN, STAT3, AKT1, TNF, MAPK1, TP53. GO and KEGG analyses indicated that the immunoreaction against lung cancer by ginseng leaves might be related to response to lipopolysaccharide, response to oxidative stress, PI3K-Akt, MAPK and TNF pathway. Molecular docking analysis demonstrated that hydrogen bonding was interaction's core forms. The results of CCK8 test and qRT-PCR showed that ginseng leaves inhibit cell proliferation and regulates AKT1 and P53 expression in A549. The present study clarifies the mechanism of Ginseng leaves against lung cancer and provides evidence to support its clinical use.


2018 ◽  
Vol 81 ◽  
pp. 144-156 ◽  
Author(s):  
Murugesan Sankarganesh ◽  
Jeyaraj Dhaveethu Raja ◽  
Karunganathan Sakthikumar ◽  
Rajadurai Vijay Solomon ◽  
Jegathalaprathaban Rajesh ◽  
...  

2019 ◽  
Vol 31 (9) ◽  
pp. 2057-2064
Author(s):  
S.R. Ashok ◽  
M.K. Shivananda ◽  
A. Manikandan

Molecular adaptation of small molecules that are targeted as therapeutic agents is a most anticipated one in drug designing and development. In the present approach, a family of substituted 1H-benzo[d]imidazol-2-amine derivatives (5a-d and 6a-e) were effectively synthesised and testified for their molecular adaptations in order to develop them as novel medications against oxidation, inflammation and inflammation associated cancer types by means of in silico and in vitro assessments. Chronic inflammation, regardless of infectious agents, plays a vital role in various cancer development. Moreover, hypoxia-inflammation-cancer are highly associated together. Hydrogen peroxide free-radical scavenging, HRBC membrane stabilization assay and cell viability test by MTT assay (macrophage) were executed to establish antioxidant, anti-inflammatory and anticancer properties of these compounds. As the prostaglandin-endoperoxide synthase 2 is highly involved in inflammation and cancer development respectively, molecular docking was executed on the corresponding X-ray crystallographic models (PDB structures).


2016 ◽  
Vol 45 (25) ◽  
pp. 10466-10479 ◽  
Author(s):  
Veysel T. Yilmaz ◽  
Ceyda Icsel ◽  
Feruza Suyunova ◽  
Muhittin Aygun ◽  
Nazlihan Aztopal ◽  
...  

DNA/BSA binding and anticancer properties of new Ni(ii), Cu(ii) and Zn(ii) 5,5-diethylbarbiturate complexes were evaluated.


2021 ◽  
pp. 1-6
Author(s):  
Vikil Ramesh ◽  
◽  
Megha Mathur ◽  
Kiran S ◽  
Rajeswari N ◽  
...  

Background and Objectives: (Eleusine coracana) is a rich source of proteins, phytochemicals, and fibers with several health benefits. Cancer accounts for 12c/o of death worldwide, which requires superior therapeutic strategies. Polyphenols are a class of phytochemicals in plant derived compounds, that has been reported to exhibit anticancer, antioxidant, anti-inflammatory and antimicrobial properties. The objective was to investigate the binding potential of selected polyphenols against probable drug targets of various types of cancer and provide an insight on the anti-inflammatory, antioxidant, and antimicrobial properties by using molecular docking method. Materials and Methods: Ten receptors were analyzed for anticancer, two receptors for anti- inflammatory, three receptors for antioxidant, and five receptors for antimicrobial studies. The binding competences of polyphenol towards selected targets were studied by molecular docking. Results: Affinity of polyphenols as an anticancer agent with respect specific targets viz CDKN1A, FOXO1, FGFR2, CTNNB1, and GST-PI was evident. The binding energies of docked complexes were found to be -116.56, -114.5, -110.38, -106.9, and -105.07 kcal/mol, respectively. In case of anti-inflammatory the best binding was seen in between COX-2 receptor with and COX-1 receptors. Antioxidant studies it was observed that SOD2 showed the best binding energy followed by SOD3. Followed by antimicrobial studies the best binding interaction some how were shown by IARS and PBP1a receptors. Conclusion: Present studies revealed that polyphenols has superior interacting properties towards these cancer targets than their normal ligands and shows a strong approach to anti-inflammatory, antioxidant, and antimicrobial activity


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazi M. Rana ◽  
Jannatul Maowa ◽  
Asraful Alam ◽  
Sujan Dey ◽  
Anowar Hosen ◽  
...  

Author(s):  
RAMA ADIGA

Objective: The hyrtimomine A-K class of indole-based compounds extracted from Hyrtios spp. of sponges from the sea has not been studied for their anticancer properties. Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of many types of cancer. Compounds currently targeting PDK1 are currently of poor specificity and solubility. Hence, molecular docking to look for new compounds inhibiting PDK1 from the marine environment was carried out. Methods: Target selection for ligands hyrtimomine A-K was done using PharmMapper tool. Molecular docking was done using iGEMDOCK 2.1, a generic evolutionary method of docking. Site moiety mapping was done in SimMap to extract the anchor preference of the top hits. Comparison of ligand binding energies, pharmacokinetic properties with lead compound BX-517 was carried out. Results: Hyrtimomine B, C, D, and G were top hits using iGEMDOCK. The highest score was obtained for hyrtimomine C. Van der Waals interaction at T222 and V96 and hydrogen bond interaction at K111 determined pocket stability. The solubility properties of the compound showed higher score for hyrtimomine C. The conserved features of hyrtimomine C were then compared with the crystal structure of lead compound (BX-517, which was not developed further due to poor solubility and bioavailability). The pharmacokinetic properties of hyrtimomine C were superior to BX-517 and had better solubility and drug-likeness score, hence, may be a candidate structure for drug development. Conclusion: The unique azapeno indole structure of hyrtimomine C highlighted the mode of binding and residues in binding site.


Sign in / Sign up

Export Citation Format

Share Document