Peroxisome proliferator-activated receptor ɑ (PPARɑ)–cytochrome P450 epoxygenases-soluble epoxide hydrolase axis in ER + PR + HER2− breast cancer

2019 ◽  
Vol 53 (3) ◽  
pp. 141-148
Author(s):  
Zdenek Tauber ◽  
Marketa Koleckova ◽  
Katerina Cizkova
2016 ◽  
Vol 311 (4) ◽  
pp. R676-R688 ◽  
Author(s):  
Ahmad Hanif ◽  
Matthew L. Edin ◽  
Darryl C. Zeldin ◽  
Christophe Morisseau ◽  
Mohammed A. Nayeem

The relationship between soluble epoxide hydrolase (sEH) and coronary reactive hyperemia (CRH) response to a brief ischemic insult is not known. Epoxyeicosatrienoic acids (EETs) exert cardioprotective effects in ischemia/reperfusion injury. sEH converts EETs into dihydroxyeicosatrienoic-acids (DHETs). Therefore, we hypothesized that knocking out sEH enhances CRH through modulation of oxylipin profiles, including an increase in EET/DHET ratio. Compared with sEH+/+, sEH−/− mice showed enhanced CRH, including greater repayment volume (RV; 28% higher, P < 0.001) and repayment/debt ratio (32% higher, P < 0.001). Oxylipins from the heart perfusates were analyzed by LC-MS/MS. The 14,15-EET/14,15-DHET ratio was 3.7-fold higher at baseline ( P < 0.001) and 5.6-fold higher post-ischemia ( P < 0.001) in sEH−/− compared with sEH+/+ mice. Likewise, the baseline 9,10- and 12,13-EpOME/DiHOME ratios were 3.2-fold ( P < 0.01) and 3.7-fold ( P < 0.001) higher, respectively in sEH−/− compared with sEH+/+ mice. 13-HODE was also significantly increased at baseline by 71% ( P < 0.01) in sEH−/− vs. sEH+/+ mice. Levels of 5-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids were not significantly different between the two strains ( P > 0.05), but were decreased postischemia in both groups ( P = 0.02, P = 0.04, P = 0.05, P = 0.03, respectively). Modulation of CRH by peroxisome proliferator-activated receptor gamma (PPARγ) was demonstrated using a PPARγ-antagonist (T0070907), which reduced repayment volume by 25% in sEH+/+ ( P < 0.001) and 33% in sEH−/− mice ( P < 0.01), and a PPARγ-agonist (rosiglitazone), which increased repayment volume by 37% in both sEH+/+ ( P = 0.04) and sEH−/− mice ( P = 0.04). l-NAME attenuated CRH in both sEH−/− and sEH+/+. These data demonstrate that genetic deletion of sEH resulted in an altered oxylipin profile, which may have led to an enhanced CRH response.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2171
Author(s):  
Xuanmao Jiao ◽  
Lifeng Tian ◽  
Zhao Zhang ◽  
Joanna Balcerek ◽  
Andrew V. Kossenkov ◽  
...  

HER2, which is associated with clinically aggressive disease, is overexpressed in 15–20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.


2019 ◽  
Vol 316 (4) ◽  
pp. G527-G538 ◽  
Author(s):  
Liu Yao ◽  
Boyang Cao ◽  
Qian Cheng ◽  
Wenbin Cai ◽  
Chenji Ye ◽  
...  

Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg·kg−1·day−1 for the animal model and 1 μM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-α (PPAR-α), as evidenced by elevated β-oxidation of fatty acids and the expression of PPAR-α target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-α activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-α. Of note, 11,12-EET ligand dependently activated PPAR-α. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-α was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.


MedChemComm ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 1209-1216 ◽  
Author(s):  
R. Blöcher ◽  
C. Lamers ◽  
S. K. Wittmann ◽  
O. Diehl ◽  
T. Hanke ◽  
...  

Metabolic syndrome (MetS) is a widespread, complex disease cluster which consists of hypertension, atherosclerosis, dyslipidaemia and type II diabetes.


2007 ◽  
Vol 292 (3) ◽  
pp. C996-C1012 ◽  
Author(s):  
Arthur A. Spector ◽  
Andrew W. Norris

Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca2+-activated K+ channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor α (PPARα) and PPARγ, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs.


Sign in / Sign up

Export Citation Format

Share Document