3D FEM Simulation of Milling Force in Corner Machining Process

2017 ◽  
Vol 30 (2) ◽  
pp. 286-293 ◽  
Author(s):  
Caixu YUE ◽  
Cui HUANG ◽  
Xianli LIU ◽  
Shengyu HAO ◽  
Jun LIU
2011 ◽  
Vol 474-476 ◽  
pp. 633-638 ◽  
Author(s):  
Chang Yi Liu ◽  
Zhi An Tang ◽  
Sheng Yang ◽  
Wen Wen Liu ◽  
Yuan Dong Lu

In this paper Finite element methods (FEM) and cutting experiment were used to investigate the machinability of titanium alloy ZTC4 (cast Ti6Al4V). Machinability was evaluated as cutting force, temperature, and surface roughness. Two-dimension (2D) and three-dimension (3D) machining process FEM models were established. Material constitutive applied Johnson-Cook model synthesizing elastic and plastic deformation. Chip separated criteria adopted arbitrary Lagrangian Euler (ALE) algorithm. Heat generation source included the rake face chip flow under conditions of seizure and chip/tool friction, clearance face tool/workpiece friction. 3D discrete milling tool was modeled and the milling process was simulated. The ZTC4 milling experiments were designed and carried out with same cutting conditions of the 3D FEM simulation. The results of FEM simulation and the experiment were compared and analysed. The influences of the machining variables to the machinability of ZTC4 were discussed.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


2019 ◽  
Vol 33 (6) ◽  
pp. 734-742 ◽  
Author(s):  
E. S. Goncharov ◽  
A. N. Lyakhov ◽  
T. V. Loseva

2014 ◽  
Vol 800-801 ◽  
pp. 243-248
Author(s):  
Kai Zhao ◽  
Zhan Qiang Liu

When machining the complex parts of aircraft engines, the milling force for the circular contour must be accurately predicted to reduce machining vibration. In this paper, the prediction model of the mean milling force per tooth during machining circular contour is developed. Firstly, the formulas of the entry angle, the exit angle and the equivalent feed per tooth are established through the analysis of circular contour milling process. Then, the equation of the mean milling force per tooth is deduced based on mechanistic force model during the circular contour machining process. Finally, the prediction model of mean milling force per tooth during machining circular contour is developed using MATLAB programming. The relationship between the milling force per tooth and surface curvature radius of the machined workpiece is also analyzed in this paper.


2008 ◽  
Vol 367 ◽  
pp. 125-136 ◽  
Author(s):  
Lorenzo Donati ◽  
Luca Tomesani

This work summarizes the outcome of recent research by the authors on modeling the formation of seam welds in aluminum extrusion and on evaluating the related mechanical properties on the final products. A profile with a seam weld in the middle section was produced with different die designs in order to investigate the relation between die design and local welding parameters, such as contact pressure, temperature, time of contact, strain and strain rate paths. The local welding conditions were evaluated by complete thermo-mechanical 3D FEM simulation of the processes. Specimens were extracted from the profiles and tensile tested, the resulting mechanical properties being discussed with respect to the local welding conditions. The possibility to adopt criteria for assessing the welding quality is discussed, together with the effect of high speed damage cracking.


2010 ◽  
Vol 439-440 ◽  
pp. 838-841
Author(s):  
Jun Zhan ◽  
Gui Min Chen ◽  
Xiao Fang Liu ◽  
Qing Jie Liu ◽  
Qian Zhang

Gyroscope is the core of an inertia system and made by machining process. Machining process imports large residual stress. The residual stress will be released and induces large deformation of gyroscope frame. In this paper, the effects of residual stress on deformation of gyroscope frame were simulated by finite element method. Different stress distribution leads different deformation. Compressive stress can make sample long and tensile stress make sample short. The stress released in deformation process which reduced about 90%.


2019 ◽  
Vol 155 ◽  
pp. 417-429 ◽  
Author(s):  
Guoliang Liu ◽  
Chuanzhen Huang ◽  
Rui Su ◽  
Tuğrul Özel ◽  
Yue Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document