Milling Force Prediction for Circular Contour Machining

2014 ◽  
Vol 800-801 ◽  
pp. 243-248
Author(s):  
Kai Zhao ◽  
Zhan Qiang Liu

When machining the complex parts of aircraft engines, the milling force for the circular contour must be accurately predicted to reduce machining vibration. In this paper, the prediction model of the mean milling force per tooth during machining circular contour is developed. Firstly, the formulas of the entry angle, the exit angle and the equivalent feed per tooth are established through the analysis of circular contour milling process. Then, the equation of the mean milling force per tooth is deduced based on mechanistic force model during the circular contour machining process. Finally, the prediction model of mean milling force per tooth during machining circular contour is developed using MATLAB programming. The relationship between the milling force per tooth and surface curvature radius of the machined workpiece is also analyzed in this paper.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4031 ◽  
Author(s):  
Ming Luo ◽  
Zenghui Chong ◽  
Dongsheng Liu

In the milling process, cutting forces contain key information about the machining process status in terms of workpiece quality and tool condition. On-line cutting force measurement is key for machining condition monitoring and machined surface quality assurance. This paper presents a novel instrumented working table with integrated polyvinylidene fluoride (PVDF) thin-film sensors, thus enabling the dynamic milling force measurement with compact structures. To achieve this, PVDF thin-film sensors are integrated into the working table to sense forces in different directions and the dedicated cutting force decoupling model is derived. A prototype instrumented working table is developed and validated. The validation demonstrates that profiles of the forces measured from the developed instrumented working table prototype and the dynamometer match well. Furthermore, the milling experiment results convey that the instrumented working table prototype could also identify the tool runout due to tool manufacturing or assembly errors, and the force signal spectrum analysis indicates that the developed working table can capture the tool passing frequency correctly, therefore, is suitable for the milling force measurement.


2010 ◽  
Vol 426-427 ◽  
pp. 284-288
Author(s):  
Dong Lu ◽  
Guo Hua Qin ◽  
Yi Ming Rong ◽  
C.M. Peng

This document Cutting stress coupled with clamping stress and initial stress affects the workpiece deformation. To analyze the workpiece deformation the initial stress model is developed. The finite element model of milling process is established and the milling force and milling heat is predicted. The multi-stress coupled model is developed and the workpiece deformation during machining process and deformation after fixtures released are predicted. This study is helpful to predict and control the deformation for thin-walled workpiece.


2014 ◽  
Vol 800-801 ◽  
pp. 761-765
Author(s):  
Hui Nan Shi ◽  
Fu Gang Yan ◽  
Yun Peng Ding ◽  
Xian Li Liu ◽  
Rui Zhang

In cavity die corner-machining, tool flexible deformation caused by the milling force resulting in the surface error, a method of off-line error compensation is put forward. Instantaneous chip thickness model and the corner milling force model is established based on differential and the characteristics of the corner. Combining the theory of cantilever beam and the finite element analysis, cutting tool elastic deformation model is established.


2014 ◽  
Vol 981 ◽  
pp. 895-898
Author(s):  
Fu Cai Zhang ◽  
Qing Wang ◽  
Ru Yang

Aiming at NC milling processing simulation problem, a ball-end cutter milling force model is established, the numerical simulation analysis of aluminum alloy AL2024 milling process is conducted by using the finite element analysis software AdvantEdge finite element analysis. Focus on the Milling force simulation, the size of the milling force is obtained by simulating calculation. Using the same cutting parameters for milling experiment, the results show that simulation analysis of the cutting force values ​​are in good agreement with the experimental results,the milling force model prior established is correct. The research laid a foundation for the perfect CNC milling simulation system.


2013 ◽  
Vol 650 ◽  
pp. 139-144
Author(s):  
Chen Wei Shan ◽  
Ying Zhao ◽  
Dong Peng Cui

Along with the development of high speed machining technology, the ball end milling cutter’s application is more and more widely. An influence of four control parameters, namely feed, cutting depth, spindle speed and cutting width, on cutting forces is investigated. This paper focuses on experimental research of milling process of carbon fiber reinforced carbon matrix composite (C/C composite). The milling force prediction model for milling of composite using the carbide ball-end tools is built by orthogonal experiment. The experiment results show that : the reliability of the this prediction model is quite high, and the effect of milling speed on milling force is not very obvious, but the milling force increases with the increment of feed per tooth, milling depth and milling width. Using this information, a new prediction model for the milling forces is proposed that can be used for C/C composite milling.


1991 ◽  
Vol 113 (3) ◽  
pp. 444-450 ◽  
Author(s):  
A. Spence ◽  
Y. Altintas

A milling process adaptive control method, which prevents force overshoots during sudden part geometry changes, has been developed by providing online information to the controller from the part’s CAD representation. A first-order discrete model structure to represent the milling process for adaptive control was analytically developed and experimentally identified. Provided with geometric information obtained from the part’s CAD model, and utilizing the milling force model, the adaptive controller predicts the maximum cutting force expected in advance of dangerous immersion changes. The technique permits the controller to anticipate the changing workpiece in time to eliminate force overshoots which would otherwise break the tool, yet adaptive control at all times remains active to respond to other geometrical and material variations. Simulation and experimental results are presented to confirm the viability of the proposed method.


Author(s):  
Xiaohong Lu ◽  
Hua Wang ◽  
Zhenyuan Jia ◽  
Yixuan Feng ◽  
Steven Y Liang

Micro-milling forces, cutting temperature, and thermal–mechanical coupling are the key research topics about the mechanism of micro-milling nickel-based superalloy Inconel 718. Most current analyses of thermal–mechanical coupling in micro-milling are based on finite element or experimental methods. The simulation is not conducive to revealing the micro-milling mechanism, while the results of experiments are only valid for certain machine tool and workpiece material. Few analytical coupling models of cutting force and cutting temperature during micro-milling process have been proposed. Therefore, the authors studied coupled thermal–mechanical analyses of micro-milling Inconel 718 and presented a revised three-dimensional analytical model of micro-milling forces, which considers the effects of the cutting temperature and the ploughing force caused by the arc of cutting edge during shear-dominant cutting process. Then, an analytical cutting temperature model based on Fourier’s law is presented by regarding the contact area as a moving finite-length heat source. Coupling calculation between micro-milling force model and temperature model through an iterative process is conducted. The novelty is including cutting temperature into micro-milling force model, which simulates the interaction between cutting force and cutting temperature during micro-milling process. The established model predicts both micro-milling force and temperature. Finally, experiments are conducted to verify the accuracy of the proposed analytical method. Based on the coupled thermal–mechanical analyses and experimental results, the authors reveal the effects of cutting parameters on micro-milling forces and temperature.


2015 ◽  
Vol 1115 ◽  
pp. 55-58
Author(s):  
Wan Mohd Azlan Nowalid ◽  
Muhammad Adib Shaharun ◽  
Ahmad Razlan Yusoff

The cutting force is the main important factor contributing the machined work piece surface and in determining the acceptable cutting parameters for high productivity in metal cutting industries. The prediction of cutting force coefficients of materials were calculated from the average cutting force model contributing to the constants of cutting force coefficients. In this study, experimental investigation is conducted to determine the cutting force coefficients in the average cutting force model, by identifying cutting force coefficients with different lubrication conditions such as dry, flood and minimal lubrication conditions and cutting speeds. A series of slot milling experiments are measured the milling forces by fixing the spindle speeds and radial/axial depths of cutting and linearly varying the feed per tooth. Using linearly fitting the experimental data, the tangential and radial milling force coefficients are then computed. The achieved results showed that the changing of spindle speed and different lubrication conditions affecting the milling force coefficient.


2020 ◽  
pp. 073168442097176
Author(s):  
Fuji Wang ◽  
Guangjian Bi ◽  
Fuda Ning

The milling process is always required to achieve dimensional tolerance for the near-net-shape carbon fiber reinforced polymer (CFRP) parts. However, delamination and cracking are inevitably induced in milling CFRP due to the excessive milling forces. The milling forces should be thereby well controlled to reduce damages of CFRP parts. Developing a theoretical milling force model is an effective approach to understand the mechanism of milling force generation. Recent studies have established the predictive models; however, the interlaminar effect impacting the material removal process is not considered during milling multidirectional CFRP laminate, limiting the predictive model accuracy. In this work, a model of dynamic milling force for multidirectional CFRP laminate was developed by considering the interlaminar effect for the first time. The specific cutting energy predicted by the artificial neural network methodology was employed to calculate the milling forces during milling a single CFRP layer. Meantime, the support of the layer was enhanced due to the interlaminar effect, and the correction coefficients for each type of support were proposed to reflect the role of this effect. Then, the overall milling forces for multidirectional CFRP laminate can be obtained via the superposition principle, which agreed well with the experimentally measured results.


Sign in / Sign up

Export Citation Format

Share Document