scholarly journals A DEM study of powder spreading in additive layer manufacturing

2019 ◽  
Vol 22 (1) ◽  
Author(s):  
Yahia M. Fouda ◽  
Andrew E. Bayly

AbstractIn this paper, discrete element method simulations were used to study the spreading of an idealised, blade based, powder coating system representative of the spreading of spherical, mono-sized, non-cohesive titanium alloy (Ti6AlV4) particles in additive layer manufacturing applications. A vertical spreader blade was used to accelerate a powder heap across a horizontal surface, with a thin gap between the blade and the surface, resulting in the deposition of a thin powder layer. The results showed that it is inevitable to deposit a powder layer with a lower packing fraction than the initial powder heap due to three mechanisms: shear-induced dilation during the initiation of powder motion by the spreader; dilation and rearrangement due to powder motion through the gap; and the inertia of the particles in the deposited powder layer. It was shown that the process conditions control the contribution of these three mechanisms, and that the velocity profile in the shear layer in front of the gap is critical to the final deposited layer packing fraction. The higher the mean normalised velocity in the shear layer the lower the deposited layer packing fraction. The gap thickness and the spreader blade velocity affect the properties of the deposited layer; with the former increasing its packing fraction and the latter decreasing it. The analysis presented in this study could be adapted to powders of different materials, morphologies and surface properties.

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Ercan M. Dede ◽  
Shailesh N. Joshi ◽  
Feng Zhou

Topology optimization of an air-cooled heat sink considering heat conduction plus side-surface convection is presented. The optimization formulation is explained along with multiple design examples. A postprocessing procedure is described to synthesize manifold or “water-tight” solid model computer-aided design (CAD) geometry from three-dimensional (3D) point-cloud data extracted from the optimization result. Using this process, a heat sink is optimized for confined jet impingement air cooling. A prototype structure is fabricated out of AlSi12 using additive layer manufacturing (ALM). The heat transfer and fluid flow performance of the optimized heat sink are experimentally evaluated, and the results are compared with benchmark plate and pin-fin heat sink geometries that are conventionally machined out of aluminum and copper. In two separate test cases, the experimental results indicate that the optimized ALM heat sink design has a higher coefficient of performance (COP) relative to the benchmark heat sink designs.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Author(s):  
Sagar H. Nikam ◽  
N. K. Jain

Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (µ-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the µ-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


Sign in / Sign up

Export Citation Format

Share Document