Planar piston motion in dilute granular-gaseous mixture

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Yahia M. Fouda
1970 ◽  
Vol 35 (12) ◽  
pp. 3757-3761 ◽  
Author(s):  
J. Matouš ◽  
J. Šobr ◽  
J. P. Novák

1973 ◽  
Vol 3 (1) ◽  
pp. 117-118 ◽  
Author(s):  
Djordje R. Stojaković ◽  
Slobodan D. Radosavljević ◽  
Vera Č. Šćepanović

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1301
Author(s):  
Oscar E. Medina ◽  
Jaime Gallego ◽  
Sócrates Acevedo ◽  
Masoud Riazi ◽  
Raúl Ocampo-Pérez ◽  
...  

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material’s catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.


2021 ◽  
pp. 146808742110366
Author(s):  
Fukang Ma ◽  
Wei Yang ◽  
Yifang Wang ◽  
Junfeng Xu ◽  
Yufeng Li

The scavenging process of two stroke engine includes free exhaust, scavenging, and post intake process, which clears the burned gas in cylinder and suctions the fresh air for next cycle. The gas exchange process of Opposed-Piston Two-Stroke (OP2S) engine with gasoline direct injection (GDI) engine is a uniflow scavenging method between intake port and exhaust port. In order to investigate the characteristics of the gas exchange process in OP2S-GDI engine, a specific tracer gas method (TGM) was developed and the experiments were carried out to analyze the gas exchange performance under different intake and exhaust conditions and opposed-piston movement rule. The results show that gas exchange performance and trapped gas mass are significantly influenced by intake pressure and exhaust pressure. And it has a positive effect on the scavenging efficiency and the trapped air mass. Scavenging efficiency and trapped air mass are almost independent of pressure drop when the delivery ratio exceeds 1.4. Consequently, the delivery ratio ranges from 0.5 to 1.4 is chosen to achieve an optimization of steady running and minimum pump loss. The opposed piston motion phase difference only affects the scavenging timing. Scavenging performance is mainly influenced by scavenging timing and scavenging duration. With the increased phase difference of piston motion, the scavenging efficiency and delivery ratio increased gradually, the trapping efficiency would increase first and decrease then and reaches its maximum at 14°CA.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nathan Tessema Ersumo ◽  
Cem Yalcin ◽  
Nick Antipa ◽  
Nicolas Pégard ◽  
Laura Waller ◽  
...  

Abstract Dynamic axial focusing functionality has recently experienced widespread incorporation in microscopy, augmented/virtual reality (AR/VR), adaptive optics and material processing. However, the limitations of existing varifocal tools continue to beset the performance capabilities and operating overhead of the optical systems that mobilize such functionality. The varifocal tools that are the least burdensome to operate (e.g. liquid crystal, elastomeric or optofluidic lenses) suffer from low (≈100 Hz) refresh rates. Conversely, the fastest devices sacrifice either critical capabilities such as their dwelling capacity (e.g. acoustic gradient lenses or monolithic micromechanical mirrors) or low operating overhead (e.g. deformable mirrors). Here, we present a general-purpose random-access axial focusing device that bridges these previously conflicting features of high speed, dwelling capacity and lightweight drive by employing low-rigidity micromirrors that exploit the robustness of defocusing phase profiles. Geometrically, the device consists of an 8.2 mm diameter array of piston-motion and 48-μm-pitch micromirror pixels that provide 2π phase shifting for wavelengths shorter than 1100 nm with 10–90% settling in 64.8 μs (i.e., 15.44 kHz refresh rate). The pixels are electrically partitioned into 32 rings for a driving scheme that enables phase-wrapped operation with circular symmetry and requires <30 V per channel. Optical experiments demonstrated the array’s wide focusing range with a measured ability to target 29 distinct resolvable depth planes. Overall, the features of the proposed array offer the potential for compact, straightforward methods of tackling bottlenecked applications, including high-throughput single-cell targeting in neurobiology and the delivery of dense 3D visual information in AR/VR.


2009 ◽  
Vol 87 (6) ◽  
pp. 957-964 ◽  
Author(s):  
H. R. Mortaheb ◽  
M. Mafi ◽  
A. Zolfaghari ◽  
B. Mokhtarani ◽  
N. Khodapanah ◽  
...  

1997 ◽  
Vol 467 ◽  
Author(s):  
Fumio Yoshizawa ◽  
Kunihiro Shiota ◽  
Daisuke Inoue ◽  
Jun-ichi Hanna

ABSTRACTPolycrystalline SiGe (poly-SiGe) film growth by reactive thermal CVD with a gaseous mixture of Si2H6 and GeF4 was investigated on various substrates such as Al,Cr, Pt, Si, ITO, ZnO and thermally grown SiO2.In Ge-rich film growth, SEM observation in the early stage of the film growth revealed that direct nucleation of crystallites took place on the substrates. The nucleation was governed by two different mechanisms: one was a heterogeneous nucleation on the surface and the other was a homogeneous nucleation in the gas phase. In the former case, the selective nucleation was observed at temperatures lower than 400°C on metal substrates and Si, where the activation of adsorbed GeF4 on the surface played a major role for the nuclei formation, leading to the selective film growth.On the other hand, the direct nucleation did not always take place in Si-rich film growth irrespective of the substrates and depended on the growth rate. In a growth rate of 3.6nm/min, the high crystallinity of poly-Si0.95Ge0.05in a 220nm-thick film was achieved at 450°C due to the no initial deposition of amorphous tissue on SiO2 substrates.


2007 ◽  
Vol 85 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Zhang Yongfeng ◽  
Lin Lin ◽  
Jin Xiang ◽  
Huang Xin ◽  
Liao Guangxuan

Sign in / Sign up

Export Citation Format

Share Document