scholarly journals Analysis of non-iterative phase retrieval based on machine learning

2020 ◽  
Vol 27 (1) ◽  
pp. 136-141
Author(s):  
Yohei Nishizaki ◽  
Ryoichi Horisaki ◽  
Katsuhisa Kitaguchi ◽  
Mamoru Saito ◽  
Jun Tanida

AbstractIn this paper, we analyze a machine-learning-based non-iterative phase retrieval method. Phase retrieval and its applications have been attractive research topics in optics and photonics, for example, in biomedical imaging, astronomical imaging, and so on. Most conventional phase retrieval methods have used iterative processes to recover phase information; however, the calculation speed and convergence with these methods are serious issues in real-time monitoring applications. Machine-learning-based methods are promising for addressing these issues. Here, we numerically compare conventional methods and a machine-learning-based method in which a convolutional neural network is employed. Simulations with several conditions show that the machine-learning-based method realizes fast and robust phase recovery compared with the conventional methods. We also numerically demonstrate machine-learning-based phase retrieval from noisy measurements with a noisy training data set for improving the noise robustness. The machine-learning-based approach used in this study may increase the impact of phase retrieval, which is useful in various fields, where phase retrieval has been used as a fundamental tool.

2021 ◽  
Author(s):  
Matthias W. Wagner ◽  
Khashayar Namdar ◽  
Abdullah Alqabbani ◽  
Nicolin Hainc ◽  
Liana Nobre Figuereido ◽  
...  

Abstract Machine learning (ML) approaches can predict BRAF status of pediatric low-grade gliomas (pLGG) on pre-therapeutic brain MRI. The impact of training data sample size and type of ML model is not established. In this bi-institutional retrospective study, 251 pLGG FLAIR MRI datasets from 2 children’s hospitals were included. Radiomics features were extracted from tumor segmentations and five models (Random Forest, XGBoost, Neural Network (NN) 1 (100:20:2), NN2 (50:10:2), NN3 (50:20:10:2)) were tested to classify them. Classifiers were cross-validated on data from institution 1 and validated on data from institution 2. Starting with 10% of the training data, models were cross-validated using a 4-fold approach at every step with an additional 2.25% increase in sample size. Two-hundred-twenty patients (mean age 8.53 ± 4.94 years, 114 males, 67% BRAF fusion) were included in the training dataset, and 31 patients (mean age 7.97±6.20 years, 18 males, 77% BRAF fusion) in the independent test dataset. NN1 (100:20:2) yielded the highest area under the receiver operating characteristic curve (AUC). It predicted BRAF status with a mean AUC of 0.85, 95% CI [0.83, 0.87] using 60% of the training data and with mean AUC of 0.83, 95% CI [0.82, 0.84] on the independent validation data set.


2017 ◽  
Author(s):  
Atilla Özgür ◽  
Hamit Erdem

This study investigates the effects of using a large data set on supervised machine learning classifiers in the domain of Intrusion Detection Systems (IDS). To investigate this effect 12 machine learning algorithms have been applied. These algorithms are: (1) Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4) Decision Trees (J48), (5)Logistic Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule, (9)Random Forests, (10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two different training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has been used to train and test classifiers. Full training data set of KDD99 is 4.9 million instances while full test dataset is 311,000 instances. In contrast to similar previous studies, which used 0.08%–10% for training and 1.2%–100% for testing, this study uses full training dataset and full test dataset. Weka Machine Learning Toolbox has been used for modeling and simulation. The performance of classifiers has been evaluated using standard binary performance metrics: Detection Rate, True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of dataset size, performance of classifiers has been also evaluated using following hardware metrics: Training Time, Working Memory and Model Size. Test results shows improvements in classifiers in standard performance metrics compared to previous studies.


2017 ◽  
Author(s):  
Atilla Özgür ◽  
Hamit Erdem

This study investigates the effects of using a large data set on supervised machine learning classifiers in the domain of Intrusion Detection Systems (IDS). To investigate this effect 12 machine learning algorithms have been applied. These algorithms are: (1) Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4) Decision Trees (J48), (5)Logistic Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule, (9)Random Forests, (10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two different training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has been used to train and test classifiers. Full training data set of KDD99 is 4.9 million instances while full test dataset is 311,000 instances. In contrast to similar previous studies, which used 0.08%–10% for training and 1.2%–100% for testing, this study uses full training dataset and full test dataset. Weka Machine Learning Toolbox has been used for modeling and simulation. The performance of classifiers has been evaluated using standard binary performance metrics: Detection Rate, True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of dataset size, performance of classifiers has been also evaluated using following hardware metrics: Training Time, Working Memory and Model Size. Test results shows improvements in classifiers in standard performance metrics compared to previous studies.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


2021 ◽  
Author(s):  
Eva van der Kooij ◽  
Marc Schleiss ◽  
Riccardo Taormina ◽  
Francesco Fioranelli ◽  
Dorien Lugt ◽  
...  

&lt;p&gt;Accurate short-term forecasts, also known as nowcasts, of heavy precipitation are desirable for creating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this research, we explore the use of machine learning for short-term prediction of heavy rainfall showers in the Netherlands.&lt;/p&gt;&lt;p&gt;We assess the performance of a recurrent, convolutional neural network (TrajGRU) with lead times of 0 to 2 hours. The network is trained on a 13-year archive of radar images with 5-min temporal and 1-km spatial resolution from the precipitation radars of the Royal Netherlands Meteorological Institute (KNMI). We aim to train the model to predict the formation and dissipation of dynamic, heavy, localized rain events, a task for which traditional Lagrangian nowcasting methods still come up short.&lt;/p&gt;&lt;p&gt;We report on different ways to optimize predictive performance for heavy rainfall intensities through several experiments. The large dataset available provides many possible configurations for training. To focus on heavy rainfall intensities, we use different subsets of this dataset through using different conditions for event selection and varying the ratio of light and heavy precipitation events present in the training data set and change the loss function used to train the model.&lt;/p&gt;&lt;p&gt;To assess the performance of the model, we compare our method to current state-of-the-art Lagrangian nowcasting system from the pySTEPS library, like S-PROG, a deterministic approximation of an ensemble mean forecast. The results of the experiments are used to discuss the pros and cons of machine-learning based methods for precipitation nowcasting and possible ways to further increase performance.&lt;/p&gt;


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Sign in / Sign up

Export Citation Format

Share Document