scholarly journals The impact of using large training data set KDD99 on classification accuracy

Author(s):  
Atilla Özgür ◽  
Hamit Erdem

This study investigates the effects of using a large data set on supervised machine learning classifiers in the domain of Intrusion Detection Systems (IDS). To investigate this effect 12 machine learning algorithms have been applied. These algorithms are: (1) Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4) Decision Trees (J48), (5)Logistic Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule, (9)Random Forests, (10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two different training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has been used to train and test classifiers. Full training data set of KDD99 is 4.9 million instances while full test dataset is 311,000 instances. In contrast to similar previous studies, which used 0.08%–10% for training and 1.2%–100% for testing, this study uses full training dataset and full test dataset. Weka Machine Learning Toolbox has been used for modeling and simulation. The performance of classifiers has been evaluated using standard binary performance metrics: Detection Rate, True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of dataset size, performance of classifiers has been also evaluated using following hardware metrics: Training Time, Working Memory and Model Size. Test results shows improvements in classifiers in standard performance metrics compared to previous studies.

2017 ◽  
Author(s):  
Atilla Özgür ◽  
Hamit Erdem

This study investigates the effects of using a large data set on supervised machine learning classifiers in the domain of Intrusion Detection Systems (IDS). To investigate this effect 12 machine learning algorithms have been applied. These algorithms are: (1) Adaboost, (2) Bayesian Nets, (3) Decision Tables, (4) Decision Trees (J48), (5)Logistic Regression, (6) Multi-Layer Perceptron, (7) Naive Bayes, (8) OneRule, (9)Random Forests, (10) Radial Basis Function Neural Networks, (11) Support Vector Machines (two different training algorithms), and (12) ZeroR. A well-known IDS benchmark dataset, KDD99 has been used to train and test classifiers. Full training data set of KDD99 is 4.9 million instances while full test dataset is 311,000 instances. In contrast to similar previous studies, which used 0.08%–10% for training and 1.2%–100% for testing, this study uses full training dataset and full test dataset. Weka Machine Learning Toolbox has been used for modeling and simulation. The performance of classifiers has been evaluated using standard binary performance metrics: Detection Rate, True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Precision, and F1-Rate. To show effects of dataset size, performance of classifiers has been also evaluated using following hardware metrics: Training Time, Working Memory and Model Size. Test results shows improvements in classifiers in standard performance metrics compared to previous studies.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2020 ◽  
pp. 865-874
Author(s):  
Enrico Santus ◽  
Tal Schuster ◽  
Amir M. Tahmasebi ◽  
Clara Li ◽  
Adam Yala ◽  
...  

PURPOSE Literature on clinical note mining has highlighted the superiority of machine learning (ML) over hand-crafted rules. Nevertheless, most studies assume the availability of large training sets, which is rarely the case. For this reason, in the clinical setting, rules are still common. We suggest 2 methods to leverage the knowledge encoded in pre-existing rules to inform ML decisions and obtain high performance, even with scarce annotations. METHODS We collected 501 prostate pathology reports from 6 American hospitals. Reports were split into 2,711 core segments, annotated with 20 attributes describing the histology, grade, extension, and location of tumors. The data set was split by institutions to generate a cross-institutional evaluation setting. We assessed 4 systems, namely a rule-based approach, an ML model, and 2 hybrid systems integrating the previous methods: a Rule as Feature model and a Classifier Confidence model. Several ML algorithms were tested, including logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGB). RESULTS When training on data from a single institution, LR lags behind the rules by 3.5% (F1 score: 92.2% v 95.7%). Hybrid models, instead, obtain competitive results, with Classifier Confidence outperforming the rules by +0.5% (96.2%). When a larger amount of data from multiple institutions is used, LR improves by +1.5% over the rules (97.2%), whereas hybrid systems obtain +2.2% for Rule as Feature (97.7%) and +2.6% for Classifier Confidence (98.3%). Replacing LR with SVM or XGB yielded similar performance gains. CONCLUSION We developed methods to use pre-existing handcrafted rules to inform ML algorithms. These hybrid systems obtain better performance than either rules or ML models alone, even when training data are limited.


2020 ◽  
Vol 10 (2) ◽  
pp. 1-26
Author(s):  
Naghmeh Moradpoor Sheykhkanloo ◽  
Adam Hall

An insider threat can take on many forms and fall under different categories. This includes malicious insider, careless/unaware/uneducated/naïve employee, and the third-party contractor. Machine learning techniques have been studied in published literature as a promising solution for such threats. However, they can be biased and/or inaccurate when the associated dataset is hugely imbalanced. Therefore, this article addresses the insider threat detection on an extremely imbalanced dataset which includes employing a popular balancing technique known as spread subsample. The results show that although balancing the dataset using this technique did not improve performance metrics, it did improve the time taken to build the model and the time taken to test the model. Additionally, the authors realised that running the chosen classifiers with parameters other than the default ones has an impact on both balanced and imbalanced scenarios, but the impact is significantly stronger when using the imbalanced dataset.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2266 ◽  
Author(s):  
Nikolaos Sideris ◽  
Georgios Bardis ◽  
Athanasios Voulodimos ◽  
Georgios Miaoulis ◽  
Djamchid Ghazanfarpour

The constantly increasing amount and availability of urban data derived from varying sources leads to an assortment of challenges that include, among others, the consolidation, visualization, and maximal exploitation prospects of the aforementioned data. A preeminent problem affecting urban planning is the appropriate choice of location to host a particular activity (either commercial or common welfare service) or the correct use of an existing building or empty space. In this paper, we propose an approach to address these challenges availed with machine learning techniques. The proposed system combines, fuses, and merges various types of data from different sources, encodes them using a novel semantic model that can capture and utilize both low-level geometric information and higher level semantic information and subsequently feeds them to the random forests classifier, as well as other supervised machine learning models for comparisons. Our experimental evaluation on multiple real-world data sets comparing the performance of several classifiers (including Feedforward Neural Networks, Support Vector Machines, Bag of Decision Trees, k-Nearest Neighbors and Naïve Bayes), indicated the superiority of Random Forests in terms of the examined performance metrics (Accuracy, Specificity, Precision, Recall, F-measure and G-mean).


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


2021 ◽  
Author(s):  
Qifei Zhao ◽  
Xiaojun Li ◽  
Yunning Cao ◽  
Zhikun Li ◽  
Jixin Fan

Abstract Collapsibility of loess is a significant factor affecting engineering construction in loess area, and testing the collapsibility of loess is costly. In this study, A total of 4,256 loess samples are collected from the north, east, west and middle regions of Xining. 70% of the samples are used to generate training data set, and the rest are used to generate verification data set, so as to construct and validate the machine learning models. The most important six factors are selected from thirteen factors by using Grey Relational analysis and multicollinearity analysis: burial depth、water content、specific gravity of soil particles、void rate、geostatic stress and plasticity limit. In order to predict the collapsibility of loess, four machine learning methods: Support Vector Machine (SVM), Random Subspace Based Support Vector Machine (RSSVM), Random Forest (RF) and Naïve Bayes Tree (NBTree), are studied and compared. The receiver operating characteristic (ROC) curve indicators, standard error (SD) and 95% confidence interval (CI) are used to verify and compare the models in different research areas. The results show that: RF model is the most efficient in predicting the collapsibility of loess in Xining, and its AUC average is above 80%, which can be used in engineering practice.


2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
S. L. Ávila ◽  
H. M. Schaberle ◽  
S. Youssef ◽  
F. S. Pacheco ◽  
C. A. Penz

The health of a rotating electric machine can be evaluated by monitoring electrical and mechanical parameters. As more information is available, it easier can become the diagnosis of the machine operational condition. We built a laboratory test bench to study rotor unbalance issues according to ISO standards. Using the electric stator current harmonic analysis, this paper presents a comparison study among Support-Vector Machines, Decision Tree classifies, and One-vs-One strategy to identify rotor unbalance kind and severity problem – a nonlinear multiclass task. Moreover, we propose a methodology to update the classifier for dealing better with changes produced by environmental variations and natural machinery usage. The adaptative update means to update the training data set with an amount of recent data, saving the entire original historical data. It is relevant for engineering maintenance. Our results show that the current signature analysis is appropriate to identify the type and severity of the rotor unbalance problem. Moreover, we show that machine learning techniques can be effective for an industrial application.


Author(s):  
Ruslan Babudzhan ◽  
Konstantyn Isaienkov ◽  
Danilo Krasiy ◽  
Oleksii Vodka ◽  
Ivan Zadorozhny ◽  
...  

The paper investigates the relationship between vibration acceleration of bearings with their operational state. To determine these dependencies, a testbench was built and 112 experiments were carried out with different bearings: 100 bearings that developed an internal defect during operation and 12bearings without a defect. From the obtained records, a dataset was formed, which was used to build classifiers. Dataset is freely available. A methodfor classifying new and used bearings was proposed, which consists in searching for dependencies and regularities of the signal using descriptive functions: statistical, entropy, fractal dimensions and others. In addition to processing the signal itself, the frequency domain of the bearing operationsignal was also used to complement the feature space. The paper considered the possibility of generalizing the classification for its application on thosesignals that were not obtained in the course of laboratory experiments. An extraneous dataset was found in the public domain. This dataset was used todetermine how accurate a classifier was when it was trained and tested on significantly different signals. Training and validation were carried out usingthe bootstrapping method to eradicate the effect of randomness, given the small amount of training data available. To estimate the quality of theclassifiers, the F1-measure was used as the main metric due to the imbalance of the data sets. The following supervised machine learning methodswere chosen as classifier models: logistic regression, support vector machine, random forest, and K nearest neighbors. The results are presented in theform of plots of density distribution and diagrams.


Sign in / Sign up

Export Citation Format

Share Document