Numerical analysis of hard rock blasting unloading effects in high in situ stress fields

2017 ◽  
Vol 78 (2) ◽  
pp. 867-875 ◽  
Author(s):  
Si-You Xiao ◽  
Li-Jun Su ◽  
Yuan-Jun Jiang ◽  
Zhi-Xiang Liu
2021 ◽  
Vol 11 (23) ◽  
pp. 11169
Author(s):  
Guangliang Yan ◽  
Qibo Yang ◽  
Fengpeng Zhang ◽  
Qiqi Hao ◽  
Xiulong Wang ◽  
...  

In situ stress is one of the most important factors affecting rock dynamic fractures during blasting excavation of deep rock mass that generally is hard rock. In this research, crater blasting experiments on hard rock under different uniaxial static stresses were conducted to investigate the initiation and propagation process of crack networks that were induced by coupled dynamic and static loads. Furthermore, the effects of anisotropic static stress fields on the initiation and propagation of crack networks during hard rock blasting, and the crack network morphological characteristics were analyzed and elucidated. The experimental results showed that the static stress field changed the process of crack network initiation and propagation during hard rock blasting, and then control the crack network morphology. Under uniaxial static stress, the crack network was elliptical with the long axis parallel to the static stress. In addition, the larger the anisotropic static stress is, the more obvious the elliptical morphology of the crack network. Moreover, the static stress lead to the delay of crack formation which indicates that the delay time during millisecond blasting excavation of deep rock mass should be adjusted appropriately according to the in situ stress. A stress-strength ratio (SSR) of 0.15 is the threshold value where static stress may have a significant effect on the initiation and propagation of a crack network. Meanwhile, the strain field prior to crack initiation during rock blasting controlled the morphological characteristics of the crack network. Finally, the mechanism of static stress affecting propagation and morphology of crack network was revealed theoretically.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


Sign in / Sign up

Export Citation Format

Share Document