Experimental investigation of expansion behavior and uniaxial compression mechanical properties of expansive grout under different constraint conditions

Author(s):  
Nao Yao ◽  
Xingmin Deng ◽  
Qihu Wang ◽  
Yicheng Ye ◽  
Wenhao Zhang ◽  
...  
2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


Author(s):  
I. Annamalai ◽  
K. Karthik ◽  
Nitheesh Kumar ◽  
S. Muthuselvan ◽  
M. Vignesh ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 495
Author(s):  
Mingkai Zhou ◽  
Xu Cheng ◽  
Xiao Chen

The stability of steel-slag road materials remains a critical issue in their utilization as an aggregate base course. In this pursuit, the present study was envisaged to investigate the effects of fly ash on the mechanical properties and expansion behavior of cement-fly-ash-stabilized steel slag. Strength tests and expansion tests of the cement-fly-ash-stabilized steel slag with varying additions of fly ash were carried out. The results indicate that the cement-fly-ash-stabilized steel slag exhibited good mechanical properties. The expansion rate and the number of bulges of the stabilized material reduced with an increase in the addition. When the addition of fly ash was 30–60%, the stabilized material was not damaged due to expansion. Furthermore, the results of X-CT, XRD and SEM-EDS show that fly ash reacted with the expansive component of the steel slag. In addition, the macro structure of the stabilized material was found to be changed by an increase in the concentration of the fly ash, in order to improve the volumetric stability. Our study shows that the cement-fly-ash-stabilized steel slag exhibits good mechanical properties and volumetric stability with reasonable additions of fly ash.


Sign in / Sign up

Export Citation Format

Share Document